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Abstract

In this manuscript, a new high-dimensional approach for simultaneous variable and group selection is

proposed, called sparse-group SLOPE (SGS). SGS achieves false discovery rate control at both variable

and group levels by incorporating the SLOPE model into a sparse-group framework and exploiting grouping

information. A proximal algorithm is implemented for fitting SGS that works for both Gaussian and Binomial

distributed responses. Through the analysis of both synthetic and real datasets, the proposed SGS approach

is found to outperform other existing lasso- and SLOPE-based models for bi-level selection and prediction

accuracy. Further, model selection and noise estimation approaches for selecting the tuning parameter of

the regularisation model are proposed and explored.

Code: SGS is implemented in the repository github.com/ff1201/sgs. An R package will be available shortly.

Contact: ff120@ic.ac.uk

1 Introduction

Exploring the relationships between a continuous response, y ∈ Rn, and a design matrix, X ∈ Rn×p, is usually

done by fitting a linear regression model y = Xβ + ε, where β ∈ Rp and ε ∼ N (0, σ2 > 0). The problem of

identifying the variables that have a non-zero effect on the response y is called variable selection. One of the

most popular approaches for variable selection when working with high-dimensional data, p >> n, is the least

absolute shrinkage and selection operator (lasso) proposed by Tibshirani (1996). The lasso performs variable

selection by applying the `1 penalty, defined by the norm ‖x‖1 =
∑
i |xi|, that shrinks the coefficients of the

features, setting some exactly equal to zero. Over the years, a number of extensions of the lasso have been

proposed in the literature for overcoming some of its limitations. The lasso was shown to be inconsistent under

certain scenarios in Zou (2006), who then proposed the adaptive lasso, which achieves the oracle properties by

assigning different weights to the features. Further, as a consequence of using only the `1 penalty, the lasso

can select at most n variables. Thus, the elastic net extension was proposed, which combines the `1 and `2

penalties, and so does not suffer from this limitation (Zou and Hastie, 2005).

One of the challenges of variable selection is controlling the false discovery rate (FDR), as the tests for

identifying the associated variables are performed simultaneously, leading to a multiple testing problem. Bogdan

et al. (2015) proposed an adaptive extension of the lasso that is considered to be a bridge between the lasso and

FDR-control in multiple testing. The proposed method, named sorted L-one penalised estimation (SLOPE ),

applies the penalty: penSLOPE(b) =
∑p
i=1 λi|b|(i), where λ1 ≥ . . . ≥ λp, |b|(1) ≥ . . . ≥ |b|(p). SLOPE reduces to

the lasso for λ1 = · · · = λp. It is similar to the adaptive lasso approach, but whilst in the adaptive lasso the

penalties tend to decrease with increasing magnitude of the coefficients, the opposite occurs in SLOPE (Bogdan

et al., 2015). A direct link to the Benjamini-Hockberg (BH) procedure and FDR-control is found through the

choice of the penalty parameters. The BH critical values are used, so that for a variable i, λi = z(1− i · qv/2p),
where qv ∈ (0, 1) is the desired variable FDR level and z(·) is the quantile function of a standard normal

distribution. It has been shown that SLOPE achieves FDR-control under orthogonal designs (Bogdan et al.,
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2015). Additional useful properties of SLOPE include that it automatically finds the minimum total squared

error loss over a range of sparsity classes, which means no a priori knowledge of the degree of sparsity is required,

and it is asymptotically minimax (Su and Candès, 2016).

Our work proposes an approach for dealing with situations where features arise as members of groups or

from different data sources, where the aim is to select the groups and the features within the groups that are

associated with the response. Examples of such cases include biological pathways; groups of genes working

together for a specific product. When conducting pathway (gene set) analysis of genetics data, the interest is in

identifying genes and pathways associated with a change in the risk profile of a disease. Evangelou et al. (2014)

illustrated how genes discovered through pathway analysis have often been missed from conventional analyses

and can have important biological roles in the development of a disease. Similarly, with the advancements of

technology, many studies now involve the generation of multiple data sources, each with different features that

describe the samples from alternative angles. As these data sources may contain noise variables, it is imperative

that they are shrunk to zero, leaving only the signal features as non-zero. To this end, Baker et al. (2020)

proposed a data-integration approach based on the lasso for multi-view feature selection.

Both the lasso and SLOPE have been extended to selecting groups of variables, rather than just individual

variables. Consider some m-partition of the input space, G = {G1, . . . , Gm} of the set {1, . . . , p}, such that

Gi ∩Gj = ∅ for i 6= j and
⋃m
i=1Gi = {1, . . . , p}, where pg := |Gg| is the size of group g. Then, Group SLOPE

(gSLOPE ) is defined by applying the `2 norm to the group effects: pengSLOPE(b) =
∑m
g=1 λg

√
pg‖b(g)‖2, where

λ1 ≥ . . . ≥ λm,
√
p1‖b(1)‖2 ≥ . . . ≥ √pm‖b(m)‖2, and b(g) ∈ Rpg is the vector of coefficients in group g

(Gossmann et al., 2015; Brzyski et al., 2015). gSLOPE achieves group FDR-control under orthogonal designs

(Brzyski et al., 2015). With respect to the lasso, Yuan and Lin (2006) introduced the group lasso (gLasso)

approach with penalty: pengLasso(b) =
∑m
g=1

√
pg‖b(g)‖2, which reduces to the lasso when each group is a

singleton. It creates sparsity at a group level by shrinking whole groups exactly to zero so that each variable

within a group is also zero. Further, Simon et al. (2013) introduced the sparse-group lasso (SGL), which

combines the lasso with gLasso to create models with bi-level sparsity. SGL was found to outperform both the

lasso and gLasso when applied to predicting breast cancer cases using genomics data (Simon et al., 2013).

In this manuscript, SLOPE is combined with gSLOPE for obtaining sparse solutions at both variable and

group levels. The proposed approach, sparse-group SLOPE (SGS), is presented in §2. SGS works efficiently

with high-dimensional data, performs bi-level selection, and simultaneously controls the variable and group

FDRs under orthogonal designs; the last of which is not a property shared by SGL. SGS achieves FDR-

control by applying more stringent penalisation. This is imperative when dealing with datasets with sparse

representations, such as those found in genetics. An efficient algorithm is proposed for fitting SGS through an

adaptive three operator splitting approach. In §3 we present new penalty sequences which enable SGS to control

the bi-level FDR. Through the analysis of both simulated and real data, it is illustrated how SGS outperforms

existing competitive lasso- and SLOPE-based approaches. SGS was found to achieve more accurate variable

and group selection than such methods under various scenarios, including random signals, large groups, and

under the null model (§4). The problem of model selection with regards to SGS is explored in §5, with a

new noise estimation procedure proposed. Finally, SGS achieved higher classification accuracy than existing

high-dimensional approaches when applied to predicting colitis and breast cancer cases using real genetic data

in §6.

2 Sparse-group SLOPE (SGS)

To incorporate the SLOPE concept into a sparse-group framework, we define sparse-group SLOPE (SGS ) as

the solution to the convex optimisation problem given by

β̂SGS := arg min
b∈Rp

{
1

2n
`(b; y,X) + λα

p∑
i=1

vi|b|(i) + λ(1− α)

m∑
g=1

wg
√
pg‖b(g)‖2

}
, (1)
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where `(·) is the loss function (choices of loss function are described in §2.1). SGS can be seen to be a convex

combination of SLOPE and gSLOPE (Figure 1), balanced through α ∈ [0, 1], such that it reduces to SLOPE

for α = 0 and to gSLOPE for α = 1. The tuning parameter λ > 0 defines the degree of sparsity, as in the

lasso, and can also be used to define a pathwise solution (discussed in §5.1). SGS uses adaptive penalty weights,

with variable weights v = [v1 . . . vp]
>, where v1 ≥ . . . ≥ vp are matched with |b|(1) ≥ · · · ≥ |b|(p), and

group weights w = [w1 . . . wG]>, where w1 ≥ . . . ≥ wG are matched with
√
p1‖b(1)‖2 ≥ . . . ≥ √pm‖b(m)‖2;

the choice of these weights are discussed in §3.2. SGS is a generalisation of many existing high-dimensional

approaches, including the lasso, gLasso, SGL, SLOPE, and gSLOPE, using certain hyperparameter choices.

(a) SLOPE (b) gSLOPE (c) SGS with α = 0.5

Fig. 1. Units balls in R3 for the penalty functions of SLOPE (a), gSLOPE (b), and SGS (c). SGS

can be seen to be a convex combination of SLOPE and gSLOPE.

2.1 Fitting algorithm. The penalty proposed in Equation (1) is convex (the proof is given in §B.2). Both the

SLOPE and gSLOPE penalties are non-separable and data-dependent because of the sorting operation used (Bu

et al., 2021; Zhang and Bu, 2021). Subsequently, the SGS penalty is also non-separable at both the variable and

group level—that is, Penv(b) 6=
∑p
i=1 penv(bi) and Peng(b) 6=

∑m
g=1 peng(b

(g)), where Penv and Peng are the

SLOPE and gSLOPE penalties, respectively. As a result, blockwise gradient descent, which is used to fit SGL,

is not guaranteed to converge to the global optimum (Simon et al., 2013). Instead, to fit SLOPE and gSLOPE,

proximal algorithms are used, which do not require any separability assumptions. In proximal algorithms the

coordinates are updated simultaneously, in contrast to the cyclic updates used in gradient descent. An upside is

that non-separable penalties share information across variables and can detect grouping structures. This makes

a non-separable penalty preferable for a group regression setting (Ročková and George, 2016).

Proximal gradient algorithms solve optimisation problems of the form minx g(x) + h(x), where g, h are

convex functions and g is differentiable. The SGS optimisation problem falls under such a scenario. SLOPE

and gSLOPE are fitted using the proximal fast-iterative shrinkage-thresholding algorithm (FISTA) (Beck and

Teboulle, 2009). Using a proximal algorithm requires being able to evaluate the proximal mapping, given by

prox(x) := arg min
z

{
1

2t
‖z − x‖22 + h(z)

}
. (2)

For non-separable penalties, such as the lasso, where it is given by the soft-thresholding operator, the mapping

is usually derived using simple calculus. However, for non-separable penalties, finding the mapping is not trivial.

Indeed, for both SLOPE and gSLOPE, a separate algorithm is required to compute the mappings, on top of the

proximal algorithm (Bogdan et al., 2015; Gossmann et al., 2015). Instead of attempting to find the proximal

mapping of SGS directly, we can exploit the fact that the mappings of SLOPE and gSLOPE are already known

(given by Algorithm 3 in Bogdan et al. (2015) and Algorithm 2 in Gossmann et al. (2015)). To do this, SGS is
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reconsidered as a problem of the form minx f(x) + g(x) +h(x), where f is convex and Lf -smooth (differentiable

with Lipschitz gradient), and both g and h are convex and proximal—that is, we have access to their proximal

operator. The function f corresponds to the loss function in Equation (1) and the smoothness required is

satisfied by the linear and logistic regression loss functions. The former is given by the least squares function,

`(b; y,X) = ‖y −Xb‖22, and the latter is described in §B.1. The functions g and h are given by the SLOPE and

gSLOPE penalties. To solve such a problem, adaptive three operator splitting (ATOS) (Pedregosa and Gidel,

2018) can be used. ATOS requires only evaluation of the gradient of f and the proximal mappings of g and h;

all of which are already known for SGS.

2.1.1 Adaptive three operator splitting (ATOS). First, the non-adaptive version of ATOS, three operator split-

ting (TOS), is described. The idea behind TOS is to introduce two auxiliary variables y and z and instead solve

minx,y,z f(x) + g(y) + h(z) subject to the constraint x = y = z. This allows the problem to broken down into

three smaller (and simpler) sub-problems, keeping the solutions to the sub-problems as close as possible to each

other. Formally, the update for step t is given by

z[t] = proxh(x[t]),

y[t+1] = proxg(2z[t] − x[t] − γ∇f(z[t])),

x[t+1] = x[t] − z[t] + y[t+1],

where the subscript [t] indicates the value of a variable at the tth iteration and γ > 0 is the step-size (Davis and

Yin, 2017). This is a generalisation of two popular splitting approaches: when h = 0, we obtain the alternating

direction method of multipliers approach, and for g = 0, the forward-backward proximal splitting (Parikh,

2014). Both of these can be used to solve SLOPE and gSLOPE.

ATOS is a modification to TOS in two ways. First, it applies an adaptive search to the step-size (§2.1.2).

Second, it reformulates the optimisation task as a saddle point problem. If we denote h∗ as the convex conjugate

of h, then the optimisation problem can be written as (Pedregosa and Gidel, 2018)

min
x
f(x) + g(x) + h(x) = min

x

[
f(x) + g(x) + max

u
{〈x, u〉 − h∗(u)}

]
= min

x
max
u

f(x) + g(x) + 〈x, u〉 − h∗(u)︸ ︷︷ ︸
:=L(x,u)

 .
The problem reduces to finding the saddle point, (x∗, u∗), of L(x, u), where x∗ is the global minimum of the

original optimisation problem. ATOS is given in full detail in Algorithm 1. From this, it is clear that ATOS

recovers TOS by applying the transformation x[t] = b[t] + γ[t]u[t−1] and using a constant step-size.

Algorithm 1 Adaptive three operator splitting for SGS

input: z[0] ∈ Rp, u[0] ∈ Rp, γ[0] > 0, η ∈ (0, 1), v ∈ Rp, w ∈ Rm

repeat

for t = 0, 1, 2, . . . do

while f(b[t+1]) > Qt(b[t+1], γ[t]) do . Adaptive step-size search (§2.1.2)

b[t+1] = proxSLOPE(z[t] − γ[t]u[t] − γ[t]∇f(z[t]); γ[t]v) . Proximal mapping for SLOPE

γ[t] = ηγt . Decrease step-size

end while

m[t+1] = Db[t] + D−1γ[t]u[t]

z[t+1] = proxgSLOPE(m[t+1]; γ[t]w) . Proximal mapping for gSLOPE

z[t+1] = D−1z[t+1]

u[t+1] = u[t] + (b[t+1] − z[t+1])/γ[t]

end for

until
∥∥b[t+1] − z[t]

∥∥
2
≤ ε or t > tmax . Stopping criteria

output: saddle point (b[t+1], u[t+1]), where b[t+1] ∈ Rp is the solution to SGS (Equation (1).
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Algorithm 1 has the following parameters that can be tuned (stated with their default values):

• Initial step-size, γ0. Step-sizes are often set to 1 by default, although Pedregosa and Gidel (2018) rec-

ommend the following scheme instead: 1. Set ε = 10−3, z̃ = z[0] − ε∇f(z[0]). 2. Calculate ε = 0.1ε until

f(z̃) ≤ f(z[0]). 3. Calculate γ0 = 4(f(z[0])− f(z̃[0]))
∥∥∇f(z[0])

∥∥−2.

• Backtracking parameter, η. Hastie et al. (2015) recommend 0.8 for proximal algorithms, whilst Pedregosa

and Gidel (2018) recommend 0.7. The latter is used in this manuscript.

• Relative accuracy (also known as tolerance), ε = 10−4.

• Maximum number of iterations, tmax = 1000.

• Initial values: z[0], u[0] = 0.

2.1.2 Adaptive step-size search. As part of the update step, a step-size, γ, is used. A constant step-size may

cause the algorithm to converge to a nonstationary point (Hastie et al., 2015) and partially motivated the

development of ATOS. ATOS uses an adaptive search for calculating the step-size. It works in a similar way to

a backtracking line search, which is guaranteed to converge to the global optimum for convex functions (Hastie

et al., 2015). To perform the search an initial step-size, γ[0], is set and a backtracking parameter, η ∈ (0, 1), fixed

(Pedregosa and Gidel, 2018). Then, the step-size is decreased using γ[t] = ηγ[t], until f(b[t+1]) > Qt(b[t+1], γ[t]),

where

Q[t](x, γ) = f(z[t]) + 〈∇f(z[t]), x− z[t]〉+
1

2γ

∥∥x− z[t]∥∥22 . (3)

2.1.3 gSLOPE proximal weight adjustment. In the derivation of the proximal operator for gSLOPE, a trans-

formation is applied, so that the gSLOPE proximal operator can not be used directly in the ATOS algorithm.

In particular, gSLOPE is defined by the solution to the convex minimisation problem

min
b∈Rp

{
1

2
‖y −Xb‖22 +

G∑
g=1

λg
√
pg‖b(g)‖2

}
, (4)

where λ1 ≥ . . . ≥ λG,
√
p1‖b(1)‖2 ≥ . . . ≥

√
pG‖b(G)‖2. In Gossmann et al. (2015) this is reformulated using the

transformation ci =
√
pibi. In particular, let D be the diagonal matrix with entries

√
pi, so that c = Db. Then,

Equation (4) can equivalently be written as

min
c∈Rp

{
1

2
‖y −XD−1c‖22 +

G∑
g=1

λg‖c(g)‖2︸ ︷︷ ︸
:=fg(c)

}
. (5)

In the fitting algorithm for gSLOPE, the update step for c is given by

c[t+1] = proxfg (c[t] − γ[t](XD−1)>(Xb[t] − y)), (6)

where ∇fg(b[t]) = (XD−1)>(Xb[t]−y) is the gradient of fg and proxfg is the proximal mapping of Equation (4)

(Gossmann et al., 2015). The proximal mapping returns the vector c, instead of the desired vector b, and takes

c as input to the proximal mapping. As such, we need to apply a transformation onto the input and then undo

the transformation after applying the proximal mapping. The gSLOPE update steps are altered as follows:

z[t] = proxgSLOPE(b[t] + γ[t]u[t];w) −→ z[t] = proxgSLOPE(Db[t] + D−1γ[t]u[t];w), (7)

u[t+1] = u[t] + (b[t] − z[t])/γ[t] −→ u[t+1] = u[t] + (b[t] −D−1z[t])/γ[t]. (8)

The transformation Db[t] ensures c[t] is the input into the operator and the transformation D−1z[t] recovers b[t].

Additionally, the gSLOPE transformation alters the gradient, ∇fg, to include an additional D−1 term, so the

transformation D−1γ[t] accounts for this difference.
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3 FDR-control

Applying SGS to Problem 1, guarantees of the variable and group FDR of the computed estimates β̂SGS

are sought. To do this, new penalty sequences were derived and shown to control bi-level FDR. Theorem 1

introduces a new variable penalty sequence which is shown to control the variable FDR. Theorem 2 proposes

a group penalty sequence which controls the group FDR (the proofs of both are given in §C.1). Combined,

these two penalty sequences guarantee bi-level FDR-control for SGS under orthogonal designs. The theorems

are verified through simulations in §3.3.

Problem 1. Suppose we have a linear model, y = Xβ+ ε, where β ∈ Rp and ε ∼ N (0, σ2 > 0), with orthogonal

input X ∈ Rn×p. Under orthogonality, we consider the simplified model ỹ := X>y = β+ε. For ease of notation,

we refer to ỹ simply as y in §3 and §C.1. So, y ∼ N (β, Ip) and ε ∼ N (0, Ip). Further, suppose there exists

some m-partition of the input space G = {G1, . . . , Gm} of the set {1, . . . , p}, such that Gi ∩ Gj = ∅ for i 6= j

and
⋃m
i=1Gi = {1, . . . , p}. Find the oracle set S = {j : βj 6= 0}.

3.1 FDR Theorems.

Theorem 1. Suppose we apply SGS to Problem 1 using the variable weights given by

vmax
i = max

j=1,...,m

{
1

α
F−1N

(
1− qvi

2p

)
− 1

3α
(1− α)ajwj

}
, i = 1, . . . , p, (9)

where FN is the cumulative distribution function of a standard Gaussian distribution. We test the multiple

variable hypotheses given by

Hv
i : β̂i = 0, i = 1, . . . , p, (10)

and define V v and Rv to be the number of false and total variable rejections, given by

V v = |{i : βi = 0, β̂ 6= 0}|, (11)

Rv = |{i : β̂i 6= 0}|. (12)

SGS has a variable FDR (vFDR) bounded by

vFDR := E
[

V v

max(Rv, 1)

]
≤ qv

p0
p
, (13)

for a specified vFDR level qv ∈ (0, 1), where p0 := |{i : βi = 0}| is the number of true null hypotheses.

Theorem 2. Suppose we apply SGS to Problem 1 using the group weights given by

wmax
i = max

j=1,...,m

{
F−1FN(1− qgi

m )− α
∑
k∈Gj

vk

(1− α)pj

}
, i = 1, . . . ,m, (14)

where FN is the cumulative distribution function of a folded Gaussian distribution. We test the multiple group

hypotheses given by

Hg
i : ‖β̂(i)‖2 = 0, i = 1, . . . ,m, (15)

and define V g and Rg to be the number of false and total group rejections, given by

V g = |{i : ‖β(g)‖2 = 0, ‖β̂(g)‖2 6= 0}|, (16)

Rg = |{i : ‖β̂(g)‖2 6= 0}|. (17)

SGS has a group FDR (gFDR) bounded by

gFDR := E
[

V g

max(Rg, 1)

]
≤ qg

m0

m
, (18)

for a specified gFDR level qg ∈ (0, 1), where m0 := |{i : ‖β(i)‖2 = 0}| is the number of true null hypotheses.

6



3.2 Penalty sequences. The penalty sequences for SLOPE and gSLOPE (Bogdan et al., 2015; Brzyski et al.,

2015) are respectively given by

vi = F−1N (1− qvi/2p), for i = 1, . . . , p, (19)

wmax
i = max

j=1,...,m

{
1
√
pj
F−1χpj

(1− qgi/m)

}
, for i = 1, . . . ,m, (20)

where qv, qg ∈ (0, 1) are the desired variable/group FDR levels, and Fχpj
is the cumulative distribution function

of a χ distribution with pj degrees of freedom. These sequences are referred to as the SLOPE BH and gSLOPE

max sequences. Both were derived under the orthogonal case to provide FDR-control. For more general settings,

a modified sequence, termed the Gaussian sequence, was derived for SLOPE in Bogdan et al. (2015), but it

reduces to the lasso when p � n (Larsson et al., 2020), which is the primary focus of this manuscript and the

sequence is not considered further. One could use these penalties for SGS (termed SGS Original), but this

would be a rather naive approach as they were not derived specifically for SGS. Indeed, applying SGS Original

to orthogonal data (with the set-up from §3.3) does not achieve bi-level FDR-control (seen in Figures C1 and

C2). An alternative approach would be to set α = 0.5 and λ = 2 in SGS Original, to apply both penalties

in their original form (termed SGS Double), however this was also found to be unsatisfactory, as too much

penalisation is applied, so that the FDR-sensitivity trade-off is not optimised (seen in Figures C1 and C2).

Considering Theorems 1 and 2, the penalty sequences which guarantee bi-level FDR-control for SGS are

given by

vmax
i = max

j=1,...,m

{
1

α
F−1N

(
1− qvi

2p

)
− 1

3α
(1− α)ajwj

}
, i = 1, . . . , p, (21)

wmax
i = max

j=1,...,m

{
F−1FN(1− qgi

m )− α
∑
k∈Gj

vk

(1− α)pj

}
, i = 1, . . . ,m, (22)

where aj is a quantity to be estimated (discussed in §3.3). A key aspect of these sequences is that they depend

on each other, accommodating bi-level FDR-control. A relaxation of these penalty sequences is possible. For

the gSLOPE sequence, Brzyski et al. (2015) applies a relaxation to obtain the gSLOPE mean sequence

wmean
i = F

−1
χpj

(1− qgi/m), for i = 1, . . . ,m, (23)

where Fχpj
(x) :=

1

m

m∑
j=1

Fχpj
(
√
pjx). (24)

To see how a similar relaxation for SGS is feasible, observe that in the proof for Theorem 1 (§C.2), Equation

(102) can be recast as

1

m

m∑
j=1

(
1− FN

(
αvi +

1

3
(1− α)ajwj

))
≤ qvi

2p
, (25)

=⇒ 1

m

m∑
j=1

FN

(
αvi +

1

3
(1− α)ajwj

)
≥ 1− qvi

2p
. (26)

So we can pick

vmean
i = F

−1
N

(
1− qvi

2p

)
, where FN (x) :=

1

m

m∑
j=1

FN

(
αx+

1

3
(1− α)ajwj

)
, i ∈ {1, . . . , p}. (27)

Applying a similar relaxation to wmax
i (Equation (22)) gives

wmean
i = F

−1
FN

(
1− qgi

p

)
, where FFN(x) :=

1

m

m∑
j=1

FFN

(1− α)pjx+ α
∑
k∈Gj

vk

 , i ∈ {1, . . . ,m}. (28)

The derived sequences, Equations (21), (22), (27), (28), will be referred to as the vMax, gMax, vMean, and

gMean sequences, respectively. The relaxed penalty sequences are visualised in Figure 2.
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Fig. 2. Variable and group sequences shown for m = 20 uneven groups of sizes {3, . . . , 7} with p = 100

and α = 0.5. The SLOPE BH, gSLOPE mean, vMean, and gMean sequences correspond to Equations

(19), (23), (27) and (28), respectively.

3.3 Computational experiments. To verify the bi-level FDR-control computationally, an orthogonal design

matrix X = I1000 was generated. Two cases were considered: even and uneven groups. In the even case, 200

groups were used, each of size 5, and for the uneven case, 40 groups of each size {3, . . . , 7} (so that there were

also 200 groups in total). Within an active group, 60% of the variables were randomly set to active (so, α was set

to 0.6 for SGS). For both cases, the variable and group sparsity proportions of the true signal varied from 1 to

0.75 and 0.59, where sparsity proportion refers to the proportion of inactive variables/groups in the true model.

The true effects were set to β = 5δ
√

2 log p, where δ ∼ N (0, 1), because the expected value of the maximum

of p independent standard normal variables is approximately
√

2 log p (Cai and Wu, 2014). The response was

generated using the linear Gaussian model y = β + ε, where ε ∼ N (0, 1). In both cases, the hyperparameters

qv, qg = 0.05, 0.1, 0.2 and λ = 1/n were used, with 1000 Monte Carlo (MC) repetitions performed per sparsity

proportion considered.

To apply SGS, the quantity aj in the variable sequences needs to be estimated (Equations (21) and (27)).

The quantity represents the number of active variables within an active group (as shown in Theorem 1). A

suitable estimator is given by âj := bαpjc, illustrated in Figure C5. For the even case, the highest sensitivity,

whilst maintaining bi-level FDR-control, was achieved when âj = 3 (which is αpj = 0.6 · 5).

For the group sequences, complications arise from the quantity
∑
k∈Gj

vk (Equations (22) and (28)). Whilst

the variable sequence is known, we do not have prior information about the exact mappings of the penalties to

the variables, and so to the groups to which the variables belong. As such, we have made an assumption that

the highest ranking groups (those with the largest
√
pj‖β(j)‖2 values) are those with the largest group size, so

that they are assigned the largest variable penalties. So, for the highest ranking group (say, of size pj), the

variable penalty values {v1, . . . , vpj} are used.

3.3.1 Even groups. SGS achieves bi-level FDR-control using the vMax and gMax sequences (Figure 3). Using

the relaxed sequences, vMean and gMean, the bi-level FDR is kept close to the desired level, but FDR-control is

not achieved (shown in Figure C7). The best balance between FDR and sensitivity was found using the vMean

sequence with the gSLOPE mean sequence (Figure 3), where it can be observed that bi-level FDR-control is

obtained, even with the SGS variable relaxed sequence.
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Fig. 3. vFDR and gFDR shown for SGS with the vMax, gMax and the vMean, gSLOPE mean

sequences under orthogonal design with even groups, as a function of decreasing sparsity proportion.

1000 MC repetitions performed per sparsity proportion. The sensitivity is given in Figure C8.

3.3.2 Uneven groups. The active groups were chosen to ensure the true model had a similar sparsity pattern as

the even case. Under uneven groups, bi-level FDR-control is achieved using gMax and vMax penalty sequences

(Figure 4). However, using the relaxed sequences, FDR-control was again not obtained (shown in Figure C9).

The best results came from using the vMean and gSLOPE mean sequences (Figure 4), where bi-level FDR-

control occurs. For the rest of the manuscript, SGS will use the vMean sequences for the variables and the

gSLOPE mean sequences for the groups.
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Fig. 4. vFDR and gFDR shown for SGS with the vMax, gMax and the vMean, gSLOPE mean

sequences under orthogonal design with uneven groups, as a function of decreasing sparsity proportion.

1000 MC repetitions performed per sparsity proportion. The sensitivity is given in Figure C10.
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4 Simulation study

An extensive simulation study was conducted to investigate the variable and group selection performance of

SGS under non-orthogonal data. SGS is compared to the lasso, gLasso, SGL, SLOPE, and gSLOPE under

various scenarios. First, we consider how the methods perform under a fixed signal strength, which represents

an easier detection case (§4.2.1). We then consider how the detection changes as the amount of sparsity in the

true model decreases (§4.2.2). Further, the performance under a random signal is explored, as it is reflective

of a real scenario (§4.2.3). Of particular interest is how SGS adapts to detection under the presence of large

groups, indicative of a genomics scenario, which is explored in §4.2.4. Finally, the impact of changing the p/n

ratio is investigated (§4.2.5) and estimates of the type I error are calculated (§4.2.6).

4.1 Synthetic data. The design matrix X ∼ N (0,Σ) ∈ R200×800 was used with correlation matrix Σ.

Three cases of within-group correlation are considered: no, medium, and high correlation, corresponding to

ρ = 0, 0.3, 0.9, for Σi,j = ρ, where i 6= j and i and j belong to the same group. The response was generated

using the linear model y = Xβ + ε, with Gaussian noise ε ∼ N (0, σ2) and σ chosen adaptively so that the

signal-to-noise ratio was set at 6. The variables were split into 160 non-overlapping groups of sizes {3, . . . , 7},
with variable and group sparsity proportions set to 0.95 and 0.92, and the proportion of active variables within

an active group set to 0.6. For each correlation case 600 MC repetitions were performed.

The F1 score is used a primary comparison metric (defined formally in Definition 4), as it provides a balance

between sensitivity and FDR, with a high F1 score being preferable. SGS and SGL were both applied using

α = 0.95, and qv, qg = 0.1 for SGS. For each model, the data was `2 standardised and an intercept fit, using

10-fold cross-validation (CV) along a log-linear path of 20 λ values, and the 1se model was chosen1.

4.2 Results.

4.2.1 Fixed signal. The first scenario considered a strong signal, so that the detection was not particularly

challenging. The signal strength was fixed at β = 5 for the active variables. SGS achieves a substantiality

higher F1 score and lower FDR score than both SLOPE and gSLOPE methods, across all correlation values

(Figure 5). Clearly, in this case, the grouping information is useful in selecting the relevant variables and groups.

In general, we see improved performance as the correlation increases, especially for the group selection, as the

grouping information becomes more important. As an illustration of the downside of selecting all variables

within an active group when using gSLOPE, we note that the variable F1 score and FDR of gSLOPE are 0.44

and 0.69, in comparison to 0.74 and 0.37 for SGS, averaged across all correlation cases.
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Fig. 5. F1 score and FDR for SLOPE-based models, shown for ρ = 0, 0.3, 0.9, split by the type of

selection, with standard errors shown. 600 MC repetitions performed per correlation case.

1The glmnet (Friedman et al., 2010) R package was used to fit the lasso, SLOPE (Larsson et al., 2022) package for SLOPE, and

SGL (Simon et al., 2019) package for SGL. SGS and gSLOPE were fitted using the sgs GitHub repository.
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SGS is further compared to the lasso and SGL, to determine whether the additional sparsity induced by SGS

improves variable and group selection (Figure 6). SGS has an almost identical F1 score to the lasso, although

surprisingly higher FDR. This illustrates the downside of using CV for model selection when aiming to obtain

FDR-control (discussed in Section §5).
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Fig. 6. F1 score and FDR for SGS, lasso, SGL, shown for ρ = 0, 0.3, 0.9, split by the type of selection,

with standard errors shown. 600 MC repetitions performed per correlation case.

Comparing the two bi-level selection approaches, SGS clearly outperforms SGL, for both selection types.

Interestingly, the difference in performance increases as the correlation increases for group selection, providing

evidence that SLOPE-based models perform stronger under correlated designs, which is in agreement with

findings presented in Zeng and Figueiredo (2015). Averaging across all correlation cases, SGS obtains the

highest mean variable F1 score (0.74±0.02) and mean group F1 score (0.43±0.01) of all the models considered.

The full results averaged across the three correlation classes are presented in Table 1.

Distance from β Variable mean Group mean

Model MSE ↓ MAE ↓ F1 ↑ FDR ↓ Sens. ↑ F1 ↑ FDR ↓ Sens. ↑
SGS 0.48±0.01 0.16±0.00 0.74±0.02 0.37±0.01 0.95±0.02 0.43±0.01 0.61±0.01 0.57±0.01

SLOPE 0.43±0.01 0.16±0.01 0.57±0.01 0.54±0.01 0.96±0.01 - - -

gSLOPE 0.35±0.01 0.16±0.00 - - - 0.28±0.01 0.76±0.02 0.54±0.01

Lasso 0.65±0.02 0.17±0.00 0.73±0.02 0.28±0.01 0.83±0.02 - - -

SGL 91.0±2.14 1.90±0.04 0.72±0.02 0.36±0.01 0.91±0.02 0.38±0.01 0.65±0.02 0.52±0.01

Table 1: Mean squared error (MSE), mean absolute error (MAE), F1 score, FDR, and sensitivity,

averaged over all correlation cases, for SLOPE and Lasso-based models, with standard errors shown in

grey. 1800 MC repetitions performed.

4.2.2 Decreasing sparsity. Varying the sparsity proportion from the null model to a model with variable and

group sparsity proportions of 0.90 and 0.84, grants investigation into how the performance of SGS changes as

a function of the sparsity proportion. Under such a scenario, the F1 score drops as the sparsity proportion

decreases, with the FDR in turn increasing (Figure 7). This decrease is slowed as correlation increases, but

is still present. This pattern is present for all of the models. The results are unsurprising, as decreasing the

sparsity in the underlying model means there are more true signals for the models to detect, which generally

means that obtaining a higher F1 score is more challenging.

A limitation of the lasso is that it can select at most n predictors (Zou and Hastie, 2005), which is not

a limitation for the SLOPE-based models. However, as this case illustrates, once the underlying true model

is no longer strongly sparse, the performance of the SLOPE-based models drops. Therefore, these methods

are probably not suitable for such cases, rendering this limitation of the lasso as relatively insignificant in

comparison to the SLOPE-based models.
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Fig. 7. F1 score and FDR shown as a function of decreasing sparsity proportion, for the SLOPE-

based models. This is shown for the different correlation cases and split by the type of selection, with

standard errors shown. 100 MC repetitions performed per sparsity proportion and correlation case.

The sensitivity is shown in Figure D1.

4.2.3 Random signal. So far, a fixed signal β = 5 and relatively high sparsity in the underlying model were

used, and we have observed strong performance for SGS under such conditions. Here, a more realistic case of a

random signal, β ∼ N (0, 52), and a lower average variable and group sparsity of 0.88 and 0.80 are explored. This

case was designed to be more challenging, as the signal is weaker. A clear drop-off in performance in terms of

the F1 score can be observed, for all models, as is to be expected (Table 2). SGS again has the highest F1 score

amongst all models, for both types of selections. The lasso has the lowest FDR and sensitivity. Interestingly, the

SLOPE-based models have lower MSE than the lasso-based ones, in particular compared to SGL, which suffers

from inflated β̂ estimates. As the SLOPE-based models apply stronger penalisation, and therefore introduce

additional bias, one would expect this trend to go the other way.

We also take this case to illustrate the difference between SGS Original and SGS using the sequences derived

in §3.2. We find that SGS with the derived sequences obtains far superior performance than the naive application

of SGS Original, highlighting the importance of using theory to extract the full performance of SGS.

Distance from β Variable mean Group mean

Model MSE ↓ MAE ↓ F1 ↑ FDR ↓ Sens. ↑ F1 ↑ FDR ↓ Sens. ↑
SGS 1.93±0.04 0.43±0.01 0.55±0.00 0.46±0.00 0.58±0.01 0.46±0.01 0.58±0.01 0.56±0.01

SLOPE 1.77±0.04 0.43±0.01 0.39±0.00 0.64±0.01 0.61±0.00 - - -

gSLOPE 2.03±0.04 0.48±0.01 - - - 0.30±0.00 0.74±0.00 0.55±0.01

Lasso 2.03±0.04 0.41±0.01 0.45±0.00 0.36±0.00 0.43±0.01 - - -

SGL 145±2.16 2.60±0.04 0.43±0.00 0.51±0.00 0.47±0.01 0.38±0.00 0.63±0.00 0.49±0.01

SGS Original 3.28±0.05 0.55±0.01 0.25±0.01 0.70±0.01 0.23±0.01 0.36±0.01 0.58±0.01 0.35±0.01

Table 2: Mean squared error (MSE), mean absolute error (MAE), F1 score, FDR, and sensitivity,

averaged over all correlation cases, for SLOPE and Lasso-based models, with standard errors shown in

grey. 1800 MC repetitions performed.
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4.2.4 Larger groups. To gain an indication of how SGS performs for larger groups, 25 groups of sizes {5, . . . , 75}
were generated. The number of active groups was varied from the null model to 4, and the proportion of active

variables within an active group was randomly sampled from U [0.2, 0.6]; otherwise the set-up remained as

described earlier (Section §4.2.1). The results are shown in Table 3. In comparison to Figure 5, we observe

a drop in the variable F1 score for SGS, but a large increase in the group score. As there were fewer groups

present, a false group discovery was less likely, leading to lower group FDR. Here, SGS obtains a higher F1

score than the other two models, as well as lower FDRs, giving us confidence that SGS is well suited to work

with datasets with large group sizes.

Distance from β Variable mean Group mean

Model MSE ↓ MAE ↓ F1 ↑ FDR ↓ Sens. ↑ F1 ↑ FDR ↓ Sens. ↑
SGS 0.27±0.01 0.11±0.00 0.59±0.01 0.51±0.01 0.99±0.00 0.71±0.01 0.30±0.01 0.98±0.00

SLOPE 0.26±0.01 0.10±0.00 0.56±0.01 0.55±0.01 0.99±0.00 - - -

gSLOPE 0.19±0.01 0.10±0.00 - - - 0.69±0.01 0.35±0.01 1.00±0.00

Table 3: Mean squared error (MSE), mean absolute error (MAE), F1 score, FDR, and sensitivity,

averaged over all correlation cases, for SLOPE-based models, with standard errors shown in grey. 1800

MC repetitions performed.

4.2.5 Decreasing the p/n ratio. In the simulation studies considered so far, p and n have both been set to give a

p/n ratio of 4. Here, the performance of SGS is explored as this ratio decreases to 1, which reflects the scenario

of obtaining more observations. The variable/group sparsity proportions were set to 0.94 and 0.9 respectively.

Figure 8 shows how for no correlation, the F1 score increases linearly as the ratio decreases, whilst the FDR

quickly decreases. The increase is apparent, but less dramatic, for ρ = 0.3. Under high correlation (ρ = 0.9),

the F1 score stagnates as the ratio decreases. The stagnation of the score under high correlation is similar to

the trend seen in Figure 7, where the F1 score stays the same under decreasing sparsity proportion. In terms of

model performance, SGS tends to have stronger performance at a higher p/n ratio, in comparison to SLOPE

and gSLOPE, but the gap decreases with the ratio, showing that SGS provides a clear advantage when there

are less observations available.
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Fig. 8. F1 score and FDR shown as a function of decreasing p/n ratio, for the SLOPE-based models.

This is shown for the different correlation cases and split by the type of selection. The sensitivity is

shown in Figure D2. 100 MC repetitions performed per p/n ratio and correlation case.
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Type I

error rate ↓
Mean number

selected ↓

SGS 9× 10−4±2× 10−6 0.51±0.20

SLOPE 0.03±1× 10−5 23.2±1.54

gSLOPE 0.20±2× 10−5 208±3.60

Lasso 5× 10−4±1× 10−6 0.40±0.06

SGL 0.01±1× 10−5 8.33±1.01

Table 4: Type I error rate and the mean number

of selected variables, with standard errors shown in

grey. 300 MC repetitions performed.

4.2.6 Detection under the null model. In §4.2.2, the SLOPE-

based models were applied under the null model. This gives

insight into whether the approaches detect signal when none

is present, allowing for calculation of the type I error rate.

The lasso-based models were further applied to the null case

and the results were averaged over the three correlation cases

(Table 4). SGS and the lasso have the lowest type I errror

rate. This case illustrates the downside of applying only group

sparsity in gSLOPE, as the method had the highest rate, se-

lecting all variables in a group as active, leading to a large

number of inactive variables being selected as false positives.

5 Model selection

In most regularisation approaches, including SGS, the tuning parameter λ controls the level of sparsity in the

fitted model and can also be seen to be proportional to the noise level of the underlying data-generating process

(Sun and Zhang, 2012). In most situations this is an unknown quantity. As shown in §3.3 for orthogonal

designs, the choice of λ = 1 gives bi-level FDR-control. For non-orthogonal designs this quantity needs to be

estimated. This section presents two common approaches for estimating the tuning parameter. The first set

of approaches describe how models can be generated by fitting across a path of λ values. The second set of

approaches presented illustrate how to simultaneously estimate the noise and the coefficients. The section ends

with a comparison of the performance of the different approaches.

5.1 Model selection on a path. By fitting models for a path of λ values, a pathwise solution is created.

This raises the question of which model to pick along the path, as two objectives can be model discovery and

predictive performance. These two objectives are known to be in conflict with one another and may not lead

to the same choice of tuning parameter (Leng et al., 2006; Yang, 2005). There is no clear consensus on which

approach to use to discriminate between models on a path. In genetics, the type I error is often desirable to use

as a discrimination tool, but there are no finite sample guarantees for type I errors with current model selection

strategies (Bogdan et al., 2015). In general, CV is the most widely used (Freijeiro-González et al., 2022), with

the optimum model chosen as the model with the largest value of λ such that the mean-squared error is within

one standard error of the minimum error (also known as the 1se model).

However, whilst CV may pick the best predictive model, it does not aim for FDR-control and can potentially

introduce bias (Moscovich and Rosset, 2019). The lack of FDR-control is confirmed through our experimental

results (Figure 9). SLOPE and SGS were applied using CV to a simulated dataset, varying the FDR parameter

q (for SGS, qv = qg = q). Along the path for SGS, the models are able to achieve vFDR levels close to the

desired level for most choices of q, but the chosen CV models tend to have amongst the highest vFDR levels.

This raises two questions: 1. does the true model exist on the path (also known as path consistency (Hastie

et al., 2015))? and 2. how is the tuning parameter picked to give the desired FDR? To achieve FDR-control,

we require use of an additional method to work in conjunction SGS for non-orthogonal designs. A number

of such methods have been proposed in the literature including post-inference, model selection, and variable

selection approaches. One variable selection approach proposed in the literature is Knockoff. Barber and Candès

(2015) introduced Knockoff as a FDR-controlling variable selection approach that can be used alongside high-

dimensional regression approaches. Knockoff introduces pseudovariables, called knockoff variables, into the

fitting process. The number of knockoff variables selected provides an estimate for the number of false positives.

The initial version of Knockoff was shown to attain exact FDR-control but works only when n > p. Barber and

Candès (2019) extended Knockoff for the high-dimensional setting.
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Fig. 9. vFDR levels achieved for SLOPE and SGS. The lines show the vFDR levels for the 1se CV

models. Each grey dot represents the vFDR for a λ value along the path of SGS models, with the

green dots representing the value closest to the desired level. The design matrix used was i.i.d N (0, 1)

with n = 100, p = 250, m = 50, and within-group correlation of ρ = 0.3.

5.2 Estimating the noise. Alternative model selection approaches involve estimating the tuning parameter

directly. One such approach comes from using scaled sparse regression, which jointly estimate the coefficients

and noise (Sun and Zhang, 2012). When n > p, this is easily done using unbiased estimators. However, when

p ≥ n, iterative procedures are required. An example of such a procedure for the lasso is the scaled lasso

(Sun and Zhang, 2012), which iteratively estimates the noise using the mean residual square and scales the

tuning parameter in proportion to the estimated noise. This procedure was adapted to SLOPE in Algorithm

5 in Bogdan et al. (2015). We further adapt it here for our proposed SGS method by calculating β̂ using SGS

instead of SLOPE. The approach is named scaled SGS.

Without loss of generality for Theorems 1 and 2, the assumption of λ = 1 was made. If no such assumption

is made, the penalty sequences are derived as:

vmax
i (λ) = max

j=1,...,m

F
−1
N

(
1− qvi

2p

)
− 1

3 (1− α)λajwj

αλ

 , i = 1, . . . , p, (29)

wmax
i (λ) = max

j=1,...,m

{
F−1FN(1− qgi

m )− αλ
∑
k∈Gj

vk

(1− α)λpj

}
, i = 1, . . . ,m. (30)

Hence, an update of λ would result in an adaptive update of the penalty sequences. This can be incorporated

into an iterative procedure as described in Algorithm 2 and is named adaptively scaled SGS (AS-SGS ). An

interesting consequence of this proposed noise estimation approach is that it is agnostic to the choice of α. By

applying AS-SGS to the simulation set-up from §4.2.1, we observed that the solutions produced along a path

of α values were all identical to each other. This property does not hold for scaled SGS/SLOPE.

Algorithm 2 Adaptively scaled SGS (AS-SGS)

input: y,X.

Set Ŝ+ = ∅.
repeat

Set Ŝ = Ŝ+.

Set λ̂ = RSS/(n− |Ŝ| − 1), where RSS (residual sum of squares) is calculated using a linear model with y

and X restricted to the variables in Ŝ.

Generate vmax(λ̂) and wmax(λ̂) with λ̂ using Equations (29) and (30).

Compute β̂ using SGS (Equation (1)) with λ̂, vmax(λ̂), and wmax(λ̂).

Set Ŝ+ = {j : β̂j 6= 0}.
until Ŝ+ = Ŝ.

output: Ŝ, λest, v
max, wmax.
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5.3 Comparing model selection approaches. Four different approaches for tackling the model selection

task have been discussed: CV, Knockoff, scaled SGS, and AS-SGS. The performance of these approaches is

investigated using synthetic data generated by the set-up described in §4.2.1. The approaches all worked in

conjunction with SGS and the FDR-control parameters were set to qv = qg = 0.1. The F1 score is used as the

primary comparison metric.

Whilst AS-SGS is a definite improvement over scaled SGS in terms of selection, CV still produces higher

F1 scores for both types of selection, so is best for general selection (Table 5). However, AS-SGS produces

estimates closer to the true β values than the other approaches, whilst scaled SGS achieves the best FDR-

control. The results provide useful information for a practitioner wishing to apply such methods, as different

methods perform better for different metrics, but also illustrate the general need for further development of

model selection approaches, as none of the approaches considered were able to obtain an FDR level below the

set threshold of 0.1.

Distance from β Variable mean Group mean

Model MSE ↓ MAE ↓ F1 ↑ FDR ↓ Sens. ↑ F1 ↑ FDR ↓ Sens. ↑
CV 0.48±0.01 0.16±0.00 0.74±0.00 0.37±0.01 0.95±0.00 0.43±0.01 0.61±0.01 0.57±0.01

AS-SGS 0.28±0.01 0.13±0.00 0.58±0.01 0.53±0.01 0.98±0.00 0.41±0.01 0.65±0.01 0.67±0.01

Scaled SGS 0.75±0.02 0.18±0.00 0.42±0.01 0.21±0.01 0.57±0.01 0.30±0.01 0.30±0.01 0.35±0.01

Knockoff - - 0.53±0.01 0.50±0.01 0.76±0.01 0.07±0.00 0.93±0.00 0.23±0.01

Table 5: Mean squared error (MSE), mean absolute error (MAE), F1 score, FDR, and sensitivity,

averaged over all correlation cases, for various model selection approaches applied using SGS, with

standard errors shown in grey. 1800 MC repetitions performed. Note: Knockoff does not produce β̂

estimates.

6 Real data

In this section, the use of SGS as a prediction tool is explored through its application to two real datasets. The

classification performance of SGS is compared to both lasso- and SLOPE- based models.

The first dataset includes 127 individuals with 85 colitis patients and 42 controls (Burczynski et al., 2006).

The expression of 22283 genes were microarrayed across the individuals. The second dataset contains data from

60 patients who had suffered from early-stage estrogen receptor-positive breast cancer and had been treated

with tamoxifen (Ma et al., 2004). The patients were classified on whether the cancer had recurred. The initial

dataset contained over 22575 genes, but had a high level of missingness. Genes with over 50% missingness were

removed, resulting in 12071 remaining genes and mean imputation on those genes was applied. Both datasets

were accessed using the GEOquery R function2. The two datasets have previously been analysed in Simon et al.

(2013), where the authors applied lasso-based models to them. However, as the dataset sources have been

updated since this publication, the analysis is repeated here, using the same cleaning steps as in Simon et al.

(2013).

The 9 major collections of gene-sets, C1-C8 and H, of the Human Molecular Signatures Database (MSigDB)3

were downloaded for grouping the genes of the two datasets into pathways. Table E3 presents the number of

pathways and their allocated genes for each dataset and each collection. As the pathways contain overlapping

genes, we opted to duplicate the overlapping genes into the different pathways that they belong (Jacob et al.,

2009; Tang et al., 2018).

For both datasets, the samples were split into training and test sets, and the classification rate of the test

2Accessed on 08/03/2023.
3gsea-msigdb.org/gsea/msigdb/human/collections.jsp. Accessed on 08/03/2023.
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set was computed using the trained models. All 9 collections were analysed for both datasets (see Table E3).

Below, the results from the gene-set collection that achieved the highest peak classification are presented for

the two datasets.

The 127 samples of the colitis dataset were split into 50/77 train/test set observations following the work of

Simon et al. (2013). The C3 pathway collection shared 12031 genes with the dataset. Each model was applied

to a log-linear path of 100 λ values, starting at a value of λmax which generates a null model and terminating

at λmin = 0.1λmax.

SGS achieved the highest peak classification of the six models considered, at 97.4%, and was applied using

α = 0.99, showing that inducing only a small amount of group sparsity is enough to improve upon the peak of

94.8% for SLOPE (Figure 10). The much lower peak of 84.4% for gSLOPE highlights the downside of selecting

all variables within a group, as often noise variables will enter the prediction. Interestingly, the lasso was found

to have a higher classification peak than SGL (which also used α = 0.99), with 93.5% compared to 92.2%,

but with both being lower than SGS (Table 6 and Figure E1). This further illustrates the benefit of inducing

stringent bi-level sparsity. Further fitting information, including the correct classification rate as a function of

the number of predictors and the decision boundaries, is shown in Figure E2.

At the peak index of 37, the SGS model selected 9 genes from 7 pathways (Table E1). The gene NCK2 was

found to be most strongly associated with a change in risk of colitis, which is in agreement to the findings of

Burczynski et al. (2006). Amongst the other genes found by SGS, TMEM158 and BASP1 were found to be

up-regulated for the development of colitis by Xu et al. (2020).

Colitis Cancer
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Fig. 10. Correct classification rate (%) (↑) shown for SGS, SLOPE, and gSLOPE applied to the colitis

and cancer datasets, along a 100-λ regularisation path.

The 60 patients of the breast cancer dataset were split evenly to train/test sets. From our conducted analysis,

the C8 cell type signature gene sets collection gave the best classification results. The final dataset contains

6375 genes that are grouped into 550 pathways with sizes in the range [1, 533]. For this dataset, the path was

extended further to λmax = 0.01λmin to allow for denser models. The development of breast cancer follows a

complex genetic landscape (Skol et al., 2016), so more genes are required for better predictive accuracy.

SGS is again found to outperform both SLOPE and gSLOPE, obtaining a peak accuracy of 66.7%, in

comparison to 60.0% and 50.0% for SLOPE and gSLOPE (Figure 10). The optimal SGS model was found at

the peak index of 67 and selected 32 genes from 20 pathways (Table E2). SGS is found to have the highest

peak amongst the models considered (Table 6). From the most associated genes found by SGS, COX6A1 and

SUSD3 have also been shown previously to have an association with breast cancer (Iacopetta et al., 2010; Yu

et al., 2015).

Table 6 presents the peak classification rates for each method considered. For the lasso-based models, we
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observe that the lasso outperforms SGL for both datasets, showing that for SGL, the grouping information

provided no useful information for classification, but instead just increased the model variance. In constrast, by

inducing more sparsity SGS is able to extract relevant grouping information, whilst discarding noisy variables,

to improve predictive performance over SLOPE.

SLOPE-based models Lasso-based model

Dataset SGS SLOPE gSLOPE SGL Lasso gLasso

Colitis 97.4 94.8 84.4 92.2 93.5 89.6

Cancer 66.7 60.0 56.7 50.0 56.7 36.7

Table 6: Correct classification rate (%) (↑) for the SLOPE- and lasso-based models applied to the

colitis and cancer datasets.

These two data examples highlight the challenges and rewards of applying SGS to real data. In comparison

to SGL, SGS has adaptive penalty weights, which require two additional hyperparameters to specify (qv and qg),

the choice of which influence the ultimate performance of SGS. Indeed, when optimising the performance of SGS

for the colitis data, it obtained the highest peak (97.4%), but beyond the peak it had a lower classification rate

than SLOPE. Setting both FDR-control parameters to 0.01 for SGS, we achieve consistently higher accuracy

along the path than for the values qv = 10−4 and qg = 10−10 used in Figure 10, but with a peak slightly lower

at 96.1% (shown in Figure 11). As such, care is required in specifying the hyperparameters for SGS.
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Fig. 11. Correct classification rate (%) (↑) shown for SGS with qv = 10−4, qg = 10−10 and qv = qg =

0.1, applied to the colitis dataset along a 100-λ path.

7 Discussion

This manuscript presents SGS, a new approach for bi-level selection based on incorporating SLOPE into a

sparse-group framework. SGS aims to make use of the advantages of SLOPE with regards to FDR-control,

whilst also integrating grouping information. SGS was shown to control bi-level FDR under orthogonal designs,

using new penalty sequences derived specifically for SGS. The proposal has a convex and non-separable penalty.

Due to the non-separability of the penalty, a proximal algorithm, ATOS, was applied to fitting SGS, which

exploits knowledge of the proximal operators of SLOPE and gSLOPE.

Through an extensive simulation study with grouped data, the performance of SGS was explored and

compared to both lasso- and SLOPE-based methods. The conducted study showed that SGS achieves stronger

bi-level selection performance than other lasso- and SLOPE-based models. SGS achieves higher performance by

using grouping information and applying more stringent penalisation to discard noise variables. In particular,

SGS was found to maintain strong performance under highly correlated designs, in comparison to the lasso and

SGL, highlighting the benefit of adaptive penalisation. SGS was also found to perform very well under the null

model; selecting very few variables as being significant. In comparison, gSLOPE was found to select many false

variables, illustrating the downside of applying only group-wise sparsity.

SGS was further applied to two real datasets and was assessed as a prediction tool. For both datasets, SGS
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achieved the highest peak classification accuracy, showing the benefit of applying both bi-level sparsity and

more penalisation. In particular, SGL struggled in comparison to the lasso, showing that, unlike SGS, it was

not able to utilise the grouping information. From the conducted analyses, genes linked with both colitis and

breast cancer were identified.

One of the challenges when working with regularised regression models is the selection of the tuning param-

eter, λ. One of the most widely used approaches for selecting the tuning parameter is through cross-validation,

where the chosen value is the one that minimises the prediction error. The problem of model selection under a

pathwise solution is a topic that has been extensively studied (Giraud et al., 2012; Lee et al., 2016; Homrighausen

and McDonald, 2018) and in this manuscript was explored for SGS with a focus on finding an approach that en-

courages FDR-control under non-orthogonal designs. Knockoff was considered as an approach for FDR-control

in conjunction with SGS, but failed to achieve the desired control, nor strong selection performance. A new

algorithm for estimating jointly estimating the coefficients and λ, AS-SGS, was proposed and was shown to

obtain the least biased estimates of the approaches considered. However, as with Knockoff, this approach failed

to achieve exact FDR-control and was outperformed by cross-validation in terms of selection performance. Fu-

ture research is required to develop model selection approaches to achieve exact FDR-control for SLOPE-based

models under non-orthogonal designs. Such approaches will be able to extract the full potential of these models.

Similarly to both elastic-net and SGL, alongside λ, the hyperparameter α needs to be defined for SGS.

In most cases, α tends to be set subjectively or found using a grid-search approach with cross-validation.

Exploring more advanced approaches for the joint optimisation of both α and λ, possibly through the use of

bi-level optimisation with FDR-control in mind, would be an exciting next step. An alternative future direction

of work would be the implementation of screening rules, as the ones developed for SLOPE in Larsson et al.

(2020), for optimising the computational time of fitting an SGS model.
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A Definitions

A.1 Definitions. Let TP , TN , FP , and FN define the number of true positives, true negatives, false posi-

tives, and false negatives respectively.

Definition 1 (Type I error). A type I error in hypothesis testing is the mistaken rejection of an actually true

null hypothesis.

Definition 2 (Sensitivity). The sensitivity of a variable selection event is defined as the probability of rejecting

the null of no effect, given that the variable is a true signal. Formally, it is given by

Sensitivity =
TP

TP + FN
. (31)

Definition 3 (False discovery rate (FDR)). The false discovery rate (FDR) defines the rate of type I errors

when conducting multiple testing. Formally, it is defined as

FDR =
FP

FP + TP
. (32)

Definition 4 (F1 score). The F1 score is a measure of a test’s accuracy, with it being the harmonic mean of

precision and sensitivity. Formally, it is given by

F1 =
TP + TN

TP + TN + FP + FN
. (33)

B Sparse-group SLOPE (SGS)

B.1 Binomial loss function. To apply ATOS to a Binomial response, the loss function needs to be con-

vex and Lf -smooth. The loss function for logistic regression satisfies these constraints, given by `(b; y,X) =

−1/n log(L(b; y,X)), where L is the log-likelihood of a binomial distribution, given by

L(b; y,X) =

n∑
i=1

{yibᵀxi − log(1 + exp(bᵀxi))} . (34)

The negative of the log-likelihood is used as this is equivalent to maximising the likelihood.

B.2 Fitting algorithm.

Theorem 3. The SGS penalty (Equation 1) is convex.

Proof. The SLOPE penalty is convex (Bogdan et al., 2015). Similarly, the group SLOPE penalty is also convex

(Brzyski et al., 2015). Finally, the sum of convex functions is convex. Hence, the penalty function for SGS is

convex.
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Fig. C1. vFDR and gFDR shown for SGS Original and SGS Double (both Max) under orthogonal

design with even groups, as a function of decreasing sparsity proportion. 100 MC repetitions performed

per sparsity proportion. The sensitivity is given in Figure C3.
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Fig. C2. vFDR and gFDR shown for SGS Original and SGS Double (both Max) under orthogo-

nal design with uneven groups, as a function of decreasing sparsity proportion. 100 MC repetitions

performed per sparsity proportion. The sensitivity is given in Figure C4.
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Fig. C3. vSensitivity and gSensitivity shown for SGS Original and SGS Double (both Max) under

orthogonal design with even groups, as a function of decreasing sparsity proportion. 100 MC repetitions

performed per sparsity proportion.
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Fig. C4. vSensitivity and gSensitivity shown for SGS Original and SGS Double (both Max) un-

der orthogonal design with uneven groups, as a function of decreasing sparsity proportion. 100 MC

repetitions performed per sparsity proportion.
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Fig. C5. vFDR and gFDR shown for SGS with vMax and gSLOPE mean sequences under orthogonal

design with even groups, for different values of ag, as a function of decreasing sparsity proportion. 100

MC repetitions performed per sparsity proportion. The sensitivity is given in Figure C6.
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Fig. C6. vSensitivity and gSensitivity shown for SGS with vMax and gSLOPE mean sequences under

orthogonal design with even groups, for different values of ag, as a function of decreasing sparsity

proportion. 100 MC repetitions performed per sparsity proportion.
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Fig. C7. Variable and group metrics shown for SGS with vMean and gMean sequences under or-

thogonal design with even groups, as a function of decreasing sparsity proportion. 100 MC repetitions

performed per sparsity proportion.
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Fig. C8. vSensitivity and gSensitivity shown for SGS with the vMax, gMax and the vMean, gS-

LOPE mean sequences under orthogonal design with even groups, as a function of decreasing sparsity

proportion. 100 MC repetitions performed per sparsity proportion.
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Fig. C9. Variable and group metrics shown for SGS with vMean and gMean sequences under orthog-

onal design with uneven groups, as a function of decreasing sparsity proportion. 100 MC repetitions

performed per sparsity proportion.
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Fig. C10. vSensitivity and gSensitivity shown for SGS with the vMax, gMax and the vMean, gS-

LOPE mean sequences under orthogonal design with even groups, as a function of decreasing sparsity

proportion. 100 MC repetitions performed per sparsity proportion.

C.1 FDR-control proofs. In both proofs, we assume without loss of generality that λ = 1. Additionally,

the 1/n factor in Equation (1) can be absorbed into λ and is omitted from the proofs for simplicity. Hence, in

the simulation studies, λ is set to 1/n rather than 1 as in the proofs.
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C.2 Variable FDR proof

Proof of Theorem 1. Under orthogonality, we can rewrite the response as ỹ := X>y = β+ ε. This has distribu-

tion ỹ ∼ N(β, Ip). Hence, SGS can be reduced to

β̂ = arg min
b∈Rp

{
1

2
‖y − b‖22 + α

p∑
i=1

vi |b|(i) + (1− α)

m∑
g=1

wg
√
pg‖b(g)‖2

}
, (35)

Hence, from here it suffices to consider the scenario where p = n and y ∼ N (β, Ip). For the hypotheses, we

have that

P(Hv
i rejected) = P(β̂i 6= 0 | ‖β̂(g)‖2 6= 0, i ∈ Gg) (36)

Without loss of generality, we set the problem up so that the first p0 hypotheses are null, i.e, βi = 0 for i ≤ p0.

The variable FDR is given as

vFDR = E
[

V v

max(Rv, 1)

]
=

p∑
i=1

E
[
V v

r
1{Rv=r}

]
=

p∑
r=1

1

r

p0∑
i=1

P(Hv
i rejected and Rv = r). (37)

To bound the key quantity, P(Hv
i rejected and Rv = r), we use the following two lemmas (the proofs of which

are given in §C.2.1).

Lemma 1. Let Hv
i be a null hypothesis, so that i ≤ p0 and i ∈ Gg, and let r ≥ 1. Then,

{y : Hv
i rejected and Rv = r} =

{
y : |yi| > αvr +

1

3
(1− α)agwg and Rv = r

}
. (38)

Lemma 2. Consider applying SGS to ỹ = (y1, . . . , yi−1, yi+1, . . . , yp) with weights ṽ = (v2, . . . , vp) and w̃ (which

is w if variable i is not a singleton group and w with its corresponding group penalty removed if it is), and let

R̃v be the number of rejections generated. Then, for r ≥ 1 and i ∈ Gg,{
y : |yi| > αvr +

1

3
(1− α)agwg and Rv = r

}
=

{
y : |yi| > αvr +

1

3
(1− α)agwg and R̃v = r − 1

}
. (39)

Hence, using these lemmas, we calculate

P(Hv
i rejected and Rv = r) ≤ P

(
|yi| > αvr +

1

3
(1− α)agwg and R̃v = r − 1

)
(40)

= P
(
|yi| > αvr +

1

3
(1− α)agwg

)
P
(
R̃v = r − 1

)
, (41)

where the second step from independence of y and ỹ. Now, from the definition of vr, we have, for i ∈ Gg

vr ≥
F−1N

(
1− qvr

2p

)
− 1

3 (1− α)agwg

α
=⇒ 1− FN

(
αvr +

1

3
(1− α)agwg

)
≤ qvr

2p
. (42)

Hence,

P
(
|yi| > αvr +

1

3
(1− α)agwg

)
= P

(
yi > αvr +

1

3
(1− α)agwg

)
+ P

(
yi < −αvr −

1

3
(1− α)agwg

)
(43)

= 1− FN (αvr + (1− α)wg) + FN

(
−αvr −

1

3
(1− α)agwg

)
(44)

≤ qvr

2p
+
qvr

2p
=
qvr

p
, (45)

where FN
(
−αvr − 1

3 (1− α)agwg
)

= 1−FN (αvr+ 1
3 (1−α)agwg) ≤ qvr

2p , by the symmetry of yi, as yi ∼ N (0, 1)

for i ≤ p0. Hence,

P(Hv
i rejected and Rv = r) ≤ qvr

p
P(R̃v = r − 1). (46)
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Plugging this into Equation (37)

vFDR =

p∑
r=1

1

r

p0∑
i=1

P(Hv
i rejected and Rv = r) (47)

≤
p∑
r=1

1

r

p0∑
i=1

qvr

p
P(R̃v = r − 1) (48)

=

p∑
r=1

p0∑
i=1

qv
p
P(R̃ = r − 1) (49)

=

p∑
r=1

qvp0
p

P(R̃ = r − 1) (50)

=
∑
r≥1

qvp0
p

P(R̃ = r − 1), by Lemma 1 assumption (51)

=
qvp0
p

, (52)

which concludes the proof.

C.2.1 Lemma proofs. We now provides proofs for the lemmas used. To prove Lemma 1, we first prove a different

lemma.

Lemma 3. Consider nonincreasing and nonnegative sequences y1 ≥ · · · ≥ yp ≥ 0, v1 ≥ · · · ≥ vp ≥ 0, w1 ≥ · · · ≥
wm ≥ 0 and let b̂ be the solution to the problem

minf(b) :=
1

2
‖y − b‖22 + α

p∑
i=1

vibi + (1− α)

m∑
g=1

wg
√
pg‖b(g)‖2 (53)

subject to b1 ≥ · · · ≥ bp ≥ 0,
√
p1‖b(1)‖2 ≥ · · · ≥

√
pm‖b(m)‖2 ≥ 0. (54)

Then, if the first r b̂i are positive for i ∈ {1, . . . , p}, then for every j ≤ r:

r∑
i=j

yi > α

r∑
i=j

vi +
1

3
(1− α)h

∑
g∈Ivj

agwg, (55)

where Ivj = {i ∈ {1, . . . ,m} | ∃j ∈ Gi ∩ {j, . . . , r}} and ag = |Gg ∩ {j, . . . , r}|. Also, for every j ≥ r + 1:

j∑
i=r+1

yi ≤ α
j∑

i=r+1

vi + (1− α)
∑
g∈Jvj

wg
√
pg
√
ãg, (56)

where Jvj = {i ∈ {1, . . . ,m} | ∃j ∈ Gi ∩ {r + 1, . . . , j}} and ãg = |Gg ∩ {r + 1, . . . , j}|.

Proof. For the first claim, consider a new feasible (but suboptimal) solution

ci =

b̂i − h, i ∈ {j, . . . , r}

b̂i, otherwise,
(57)

where h < b̂j is a small positive scalar. By optimality of b̂, we have f(b̂)− f(c) ≤ 0. Hence,

f(b̂)− f(c) =
1

2
‖y − b̂‖22 −

1

2
‖y − c‖22 + α

p∑
i=1

vi(b̂i − ci) + (1− α)

m∑
g=1

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2) (58)

=
1

2

p∑
i=1

[
(yi − b̂i)2 − (yi − ci)2

]
+ α

p∑
i=1

vi(b̂i − ci) + (1− α)

m∑
g=1

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2). (59)
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By definition of c, it follows

f(b̂)− f(c) =
1

2

r∑
i=j

(
(yi − b̂i)2 − (yi − ci)2

)
︸ ︷︷ ︸

:=T1

+α

r∑
i=j

vi(b̂i − ci)︸ ︷︷ ︸
:=T2

+ (1− α)
∑
g∈Ivj

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2)

︸ ︷︷ ︸
:=T3

.

Working through each term separately:

T1:

T1 =
1

2

r∑
i=j

(
(yi − b̂i)2 − (yi − ci)2

)
(60)

=
1

2

r∑
i=j

(y2i + b̂2i − 2yib̂i − y2i + 2yici − c2i ) (61)

=
1

2

r∑
i=j

(b̂2i − c2i ) +

r∑
i=j

yi(ci − b̂i) (62)

=
1

2

r∑
i=j

(b̂2i − (b̂i − h)2) +

r∑
i=j

yi(b̂i − h− b̂i) (63)

=
1

2

r∑
i=j

(b̂2i − b̂2i − h2 + 2b̂ih)−
r∑
i=j

yih (64)

= −1

2

r∑
i=j

h2 − h
r∑
i=j

(yi − b̂i). (65)

T2:

T2 = α

r∑
i=j

vi(b̂i − ci) = αh

r∑
i=j

vi. (66)

T3: Here, we can apply Bound (i) from Lemma 7. So, for g ∈ {1, . . . ,m}

‖b(g)‖2 − ‖c(g)‖2 ≥
hag

3
√
pg
. (67)

Hence,

T3 = (1− α)
∑
g∈Ivj

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2) ≥ 1

3
(1− α)h

∑
g∈Ivj

agwg. (68)

Combining the three terms back together, we have that

0 ≥ f(b̂)− f(c) ≥ −1

2

r∑
i=j

h2 − h
r∑
i=j

(yi − b̂i) + αh

r∑
i=j

vi +
1

3
(1− α)h

∑
g∈Ivj

agwg (69)

=⇒ −1

2

r∑
i=j

h2 − h
r∑
i=j

(yi − b̂i) + αh

r∑
i=j

vi +
1

3
(1− α)h

∑
g∈Ivj

agwg ≤ 0 (70)

=⇒ −h
r∑
i=j

(yi − b̂i) + αh

r∑
i=j

vi +
1

3
(1− α)h

∑
g∈Ivj

agwg ≤ −
1

2

r∑
i=j

h2. (71)

We divide by h and then take the limit as h→ 0 to obtain

r∑
i=j

yi −
r∑
i=j

b̂i − α
r∑
i=j

vi −
1

3
(1− α)h

∑
g∈Ivj

agwg ≥ 0. (72)

Now, by assumption we have
∑r
i=j b̂i > 0, so

r∑
i=j

yi − α
r∑
i=j

vi −
1

3
(1− α)h

∑
g∈Ivj

agwg > 0 (73)

31



=⇒
r∑
i=j

yi > α

r∑
i=j

vi +
1

3
(1− α)h

∑
g∈Ivj

agwg, (74)

which proves the first claim. The second case is similar, but we instead consider a solution

ci =

h, i ∈ {r + 1, . . . , j}

b̂i, otherwise,
(75)

where 0 < h < b̂r. So, as before

f(b̂)− f(c) =
1

2

j∑
i=r+1

(
(yi − b̂i)2 − (yi − ci)2

)
︸ ︷︷ ︸

:=T1

+α

j∑
i=r+1

vi(b̂i − ci)︸ ︷︷ ︸
:=T2

+ (1− α)
∑
g∈Jvj

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2)

︸ ︷︷ ︸
:=T3

.

As b̂i = 0 for j ≥ r + 1, the calculations are simpler:

T1:

T1 =
1

2

j∑
i=r+1

(
(yi − b̂i)2 − (yi − ci)2

)
(76)

=
1

2

j∑
i=r+1

(y2i − y2i + 2yih− h2) (77)

= h

j∑
i=r+1

yi −
1

2

j∑
i=r+1

h2. (78)

(79)

T2:

T2 = α

j∑
i=r+1

vi(b̂i − ci) = −αh
j∑

i=r+1

vi. (80)

T3: Using the reverse triangle inequality, we obtain

‖b̂(g)‖2 − ‖c(g)‖2 ≥ −h
√
ãg. (81)

The key thing to note here is that ci = h and bi = 0 for i ∈ {r + 1, . . . , j}, so that we have replaced the zeros

with a positive scalar. Therefore ‖b̂(g)‖2 − ‖c(g)‖2 ≤ 0, so that we have not had to change sign (and therefore

could not have used 0 as a tighter bound). Hence,

T3 = (1− α)
∑
g∈Jvj

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2) ≥ −(1− α)h

∑
g∈Jvj

wg
√
pg
√
ãg. (82)

Therefore,

0 ≥ f(b̂)− f(c) ≥ h
j∑

i=r+1

yi −
1

2

j∑
i=r+1

h2 − αh
j∑

i=r+1

vi − (1− α)h
∑
g∈Jvj

wg
√
pg
√
ãg. (83)

Dividing by h and taking the limit as h→ 0 gives

j∑
i=r+1

yi ≤ α
j∑

i=r+1

vi + (1− α)
∑
g∈Jvj

wg
√
pg
√
ãg, (84)

proving the result.
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Note: We used Bounds (i) from Lemmas 7 and 8 to obtain Equations (55) and (C.2.1). If we instead use

Bounds (ii) from these lemmas, we obtain

r∑
i=j

yi > α

r∑
i=j

vi + (1− α)
∑
g∈Ivj

wg
√
pgag

2‖b(g)‖2
,

j∑
i=r+1

yi ≤ α
j∑

i=r+1

vi + (1− α)
∑
g∈Jvj

wg
√
pgãg

2‖b(g)‖2
. (85)

These will be useful in the proof of Lemma 2.

Proof of Lemma 1: We now use Lemma 3 to prove Lemma 1. Taking j = r and R = r in Equation (55)

and j = r + 1 and R = r in Equation (C.2.1), we obtain the following two expressions

|y|(r) > αvr +
1

3
(1− α)agwg and |y|(r+1) ≤ αvr+1 + (1− α)wg′

√
pg′
√
ãg′ , (86)

where Ij=r = g for r ∈ Gg and Ij=r+1 = g′ for r + 1 ∈ Gg′ . To prove Lemma 1, we first want to show

{y : Hv
i rejected and R = r} = {y : b̂i 6= 0 rejected and R = r} ⊂ {y : |yi| > αvr + 1

3 (1 − α)agwg and R = r}.
The first equality is by definition, so we are only proving the subset. If we fix an i ∈ {1, . . . , p} and suppose

b̂i is nonzero (so that we reject Hv
i ), then it must hold that |yi| ≥ |y|(r) > αvr + 1

3 (1 − α)agwg, proving

{y : Hv
i rejected and R = r} ⊂ {y : |yi| > αvr + 1

3 (1− α)agwg and R = r}.

Conversely, to show the other direction, assume that |yi| > αvr + 1
3 (1− α)agwg and R = r. Then, we must

reject Hv
i , since |yi| > αvr+1 + 1

3 (1− α)ag′wg′ ≥ |y|(r+1). This shows that {y : Hv
i rejected and R = r} ⊃ {y :

|yi| > αvr + 1
3 (1− α)agwg and R = r}, proving Lemma 1.

Proof of Lemma 2: We first assume without loss of generality that y ≥ 0. The solution to Equation (35)

has r strictly positive values. We need to prove that if y1 is rejected, then the solution to

min
b̃
g(b̃) :=

1

2

p−1∑
i=1

(ỹi − b̃i)2 + α

p−1∑
i=1

ṽi|b̃|(i) + (1− α)

m̃∑
g=1

w̃g
√
p̃g‖b̃(g)‖2, (87)

has exactly r − 1 non-zero values. Here, the removed y1 can correspond either to a singleton group, in which

m̃ = m− 1 and w̃ = w, or it is part of a larger group, such that m̃ = m− 1 and w̃ ∈ Rm−1. We need to prove

that the optimal solution b̂ to Equation (87) has both at least and at most r− 1 non-zero entries. For both, we

argue by contradiction by using new suboptimal solutions, as in Lemma 3.

At least r − 1 non-zero entries: Suppose by contradiction that b̂ has j − 1 non-zero values, j < r. If we

denote I = {i : ỹi ≥ ỹj and ỹi ≤ ỹr−1}, then we can denote a new suboptimal solution as

ci =

h, i ∈ I

b̂i, otherwise,
(88)

where 0 < h < c(j−1). By optimality, we require g(b̂)− g(c) ≤ 0. To prove the contradiction, we will show the

contrary. So, denoting Ĩvj = {i ∈ {1, . . . , m̃} | ∃j ∈ Gi ∩ I}, we have

g(b̂)− g(c) = h

r−1∑
i=j

ỹ(i) −
1

2

r−1∑
i=j

h2 − αh
r−1∑
i=j

ṽi + (1− α)
∑
g∈Ĩvj

w̃g
√
p̃g(‖b̂(g)‖2 − ‖c(g)‖2) (89)

≥ h
r−1∑
i=j

ỹ(i) −
1

2

r−1∑
i=j

h2 − αh
r−1∑
i=j

ṽi − (1− α)
∑
g∈Ĩvj

w̃g
√
p̃gãg

2‖b̃‖2
, by Equation (81) (90)

= h

r−1∑
i=j

ỹ(i−1) −
1

2

r∑
i=j+1

h2 − αh
r∑

i=j+1

ṽi − (1− α)
∑
g∈Ĩvj

w̃g
√
p̃gãg

2‖b̃‖2
, as ṽi = vi−1, (91)

≥ h
r−1∑
i=j

ỹ(i) −
1

2

r∑
i=j+1

h2 − αh
r∑

i=j+1

ṽi − (1− α)
∑
g∈Ĩvj

w̃g
√
p̃gãg

2‖b̃‖2
, as ỹ(i−1) ≥ y(i), (92)
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≥ h
r−1∑
i=j

ỹ(i) −
1

2

r∑
i=j+1

h2 − αh
r∑

i=j+1

ṽi − (1− α)
∑
g∈Ivj

wg
√
pgag

2‖b‖2
, (93)

where the final inequality is due to the fact that under Ĩvj we have either the same number of summations as

under Ivj , or one less. Now, by selecting h small enough, we obtain g(b̂)− g(c) > 0 by Equation (85), giving the

desired contradiction.

At most r − 1 non-zero entries: The proof here is similar. We again argue by contradiction that b̂ has j

non-zero values, j ≥ r. Denoting I = {i : ỹi ≥ ỹr and ỹi ≤ ỹj}, we denote a new suboptimal solution as

ci =

b̂i − h, i ∈ I

b̂i, otherwise,
(94)

where 0 < h < c(j). By optimality, we require g(b̂)− g(c) ≤ 0. To prove the contradiction, we will again show

the contrary. So,

g(b̂)− g(c) = −1

2

j∑
i=r

h2 − h
j∑
i=r

(ỹ(i) − b̂(i)) + αh

j∑
i=r

ṽi + (1− α)
∑
g∈Ivj

w̃g
√
p̃g(‖b(g)‖2 − ‖c(g)‖2) (95)

≥ −1

2

j∑
i=r

h2 − h
j∑
i=r

(ỹ(i) − b̂(i)) + αh

j∑
i=r

ṽi. (96)

Now,
j∑
i=r

(ỹ(i) − αṽi) =

j+1∑
i=r+1

(y(i) − αvi) ≤ 0, (97)

by Equation (B.4) in Bogdan et al. (2015). Hence, by selecting h to be very small, we obtain g(b̂) − g(c) > 0,

giving a contradiction and finishing the proof.

C.2.2 Choice of penalty sequence We can use Lemma 1 to define a penalty sequence for the variables. Our aim

is to choose vr such that

P(Hv
i rejected) = P(|yi| > αvr +

1

3
(1− α)agwg) ≤

qvr

p
. (98)

So,

P(|yi| > αvr +
1

3
(1− α)agwg) ≤

qvr

p
(99)

=⇒ P(yi > αvr +
1

3
(1− α)agwg + P(−yi > αvr + (1− α)wg) ≤

qvr

p
. (100)

As yi ∼ N (0, 1), because i ≤ p0, we have by symmetry

P(yi > αvr +
1

3
(1− α)agwg) ≤

qvr

2p
, (101)

=⇒ 1− FN (αvr +
1

3
(1− α)agwg) ≤

qvr

2p
, (102)

for each r ∈ {1, . . . , p}, where FN (·) is the standard normal cdf. Hence, we seek

αvr +
1

3
(1− α)agwg = F−1N

(
1− qvr

2p

)
. (103)

So,

vr =
1

α
F−1N

(
1− qvr

2p

)
− 1

3α
(1− α)agwg, r ∈ {1, . . . , p}. (104)

However, as we have no knowledge of group g, we take the sequence over the maximum possible, to ensure

definite FDR-control:

vmax
r = max

g=1,...,m

{
1

α
F−1N

(
1− qvr

2p

)
− 1

3α
(1− α)agwg

}
, r ∈ {1, . . . , p}. (105)
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C.3 Group FDR proof

Proof of Theorem 2. The proof is generally very similar to that of Theorem 1. Using orthogonality, we can

again rewrite the problem as in Equation (35) and we again consider, without loss of generality, the scenario

where p = n and y ∼ N (β, Ip). We have that

P(Hg
i rejected) = P(‖β̂(i)‖2 6= 0 | ∃j ∈ Gi s.t. β̂j 6= 0). (106)

We set things up so that m0 H
g
i hypotheses are null, i.e, ‖β(i)‖2 = 0 for i ∈ ζg ⊂ {1, . . . ,m}. We do not

assume these are the first m0 hypothesis, as is done for the variable proof. This is done to ensure both results

can co-occur. Further, assume that variables corresponding to the p0 null variable hypothesis sit within the null

groups. Hence, we can define the group FDR as

gFDR =

m∑
r=1

1

r

m0∑
i=1

P(Hg
i rejected and Rg = r). (107)

To find the key quantity, P(Hg
i rejected and Rg = r), we follow a similar strategy as for the variable FDR. We

make use of the following two lemmas (which are proved later):

Lemma 4. Let Hg
i be a null hypothesis, so that i ∈ ζg, and let r ≥ 1. Then,

{y : Hg
i rejected and Rg = r} =

{
y :
∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr and Rg = r

}
. (108)

Lemma 5. Consider applying SGS to ỹ, which is y with the observations from group i removed, with weights

w̃ = (w2, . . . , wp) and ṽ = v\{vj : j ∈ Gi}, and let R̃g be the number of rejections generated. Then, for r ≥ 1

and i ∈ Gg,{
y :
∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr and Rg = r

}
=

{
y :
∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr and R̃g = r − 1

}
.

(109)

Hence, using these lemmas, we calculate

P(Hg
i rejected and Rg = r) ≤ P

(∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr and R̃g = r − 1

)
(110)

= P

(∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr

)
P
(
R̃g = r − 1

)
, (111)

where the second step follows from independence of y and ỹ. Now, from the definition of wg, we have, for i ∈ Gg

wg ≥
F−1FN(1− qgr

m )− α
∑
i∈Gr

vi

(1− α)pr
=⇒ 1− FFN

(
α
∑
i∈Gr

vi + (1− α)prwr

)
≤ qgr

m
. (112)

Hence,

P

(∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)prwr

)
≤ qgr

m
. (113)

Therefore,

P(Hg
i rejected and Rg = r) ≤ qr

m
P(R̃g = r − 1). (114)

Plugging this into Equation (107)

gFDR =

m∑
r=1

1

r

m0∑
i=1

P(Hg
i rejected and Rg = r) ≤ qgm0

m
, (115)

which concludes the proof.
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We now provide the proofs for the lemmas. To prove Lemma 4, we first prove a different lemma.

Lemma 6. Consider nonincreasing and nonnegative sequences
∑
i∈G1

yi ≥ · · · ≥
∑
i∈Gm

yi ≥ 0, v1 ≥ · · · ≥
vp ≥ 0, w1 ≥ · · · ≥ wm ≥ 0 and let b̂ be the solution to the problem

minf(b) :=
1

2
‖y − b‖22 + α

p∑
i=1

vibi + (1− α)

m∑
g=1

wg
√
pg‖b(g)‖2 (116)

subject to b1 ≥ · · · ≥ bp ≥ 0,
√
p1‖b(1)‖2 ≥ · · · ≥

√
pm‖b(m)‖2 ≥ 0. (117)

Then, if there are exactly r non-zero ‖b̂(i)‖2 for i ∈ {1, . . . ,m}, then for every j ≤ r:

∑
i∈Igj

yi > α
∑
i∈Igj

vi + (1− α)

r∑
g=j

wgpg, (118)

where Igj = Gj ∪ · · · ∪Gr ⊂ {1, . . . , p} and for every j ≥ r + 1:

∑
i∈Jgj

yi ≤ α
∑
i∈Jgj

vi + (1− α)

j∑
g=r+1

wgpg, (119)

where Jgj = Gr+1 ∪ · · · ∪Gj ⊂ {1, . . . , p}.

Proof. Consider a new feasible solution (but suboptimal) solution

ci =

b̂i − h, i ∈ Igj
b̂i, otherwise,

(120)

where h is a small positive scalar. By optimality, we have f(b̂)− f(c) ≤ 0. Hence, as before

f(b̂)− f(c) =
1

2

p∑
i=1

[
(yi − b̂i)2 − (yi − c)2

]
+ α

p∑
i=1

vi(b̂i − ci) + (1− α)

m∑
g=1

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2). (121)

By definition of c, it follows

f(b̂)− f(c) =
1

2

∑
i∈Igj

(
(yi − b̂i)2 − (yi − c)2

)
+ α

∑
i∈Igj

vi(b̂i − ci) + (1− α)

r∑
g=j

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2).

The first two terms are as in Lemma 3, but with different summation indices. Hence, we provide calculations

only for the final term. For this term, we make use of Bound (i) in Lemma 7 with m = p, so that

‖b̂(g)‖2 − ‖c(g)‖2 ≥ h
√
pg. (122)

Therefore,

T3 = (1− α)

r∑
g=j

wg
√
pg(‖b̂(g)‖2 − ‖c(g)‖2) (123)

≥ (1− α)h

r∑
g=j

wgpg. (124)

Combining the three terms back together, we have that

0 ≥ f(b̂)− f(c) ≥ −1

2

∑
i∈Igj

h2 − h
∑
i∈Igj

(yi − b̂i) + αh
∑
i∈Igj

vi + (1− α)h

r∑
g=j

wgpg. (125)

We divide by h and then take the limit as h→ 0 to obtain∑
i∈Igj

yi −
∑
g∈Igj

b̂i − α
∑
i∈Igj

vi − (1− α)

r∑
g=j

wgpg ≥ 0. (126)
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Now, by assumption we have
∑
i∈Igj

b̂i > 0, so

∑
i∈Igj

yi − α
∑
i∈Igj

vi − (1− α)

r∑
g=j

wgpg > 0 (127)

=⇒
∑
i∈Igj

yi > α
∑
i∈Igj

vi + (1− α)

r∑
g=j

wgpg, (128)

which proves the first claim. The second case is similar, but we instead consider a solution

c =

h, i ∈ Jgj
b̂i, otherwise.

(129)

The calculation is the same as in Lemma 3, but with different indices and
√
ãg replaced by

√
pg. Hence, we

obtain ∑
i∈Jgj

yi ≤ α
∑
i∈Jgj

vi + (1− α)

j∑
g=r+1

wgpg, (130)

proving the result.

Proof of Lemma 4: We now use Lemma 6 to prove Lemma 4. Taking j = r and R = r in Equation (118)

and j = r + 1 and R = r in Equation (119), we obtain the following two expressions∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr and
∑

i∈Gr+1

|yi| ≤ α
∑

i∈Gr+1

vi + (1− α)wr+1pr+1. (131)

We first want to show {y : Hg
i rejected and R = r} ⊂ {y :

∑
i∈Gr

|yi| > α
∑
i∈Gr

vi+(1−α)wrpr and R = r}. If

we fix a group, i ∈ {1, . . . ,m}, and suppose ‖b̂‖2 6= 0, then
∑
i∈G1

|yi| ≥
∑
i∈Gr

|y|(i) > α
∑
i∈Gr

vi+(1−α)wrpr,

proving {y : Hg
i rejected and R = r} ⊂ {y :

∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr and R = r}.

To show the other direction, assume that
∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1−α)wrpr and R = r. Then, we must

reject Hg
i , since

∑
i∈Gr

|yi| >
∑
i∈Gr+1

|yi|. This shows that {y : Hg
i rejected and R = r} ⊃ {y :

∑
i∈Gr

|yi| >
α
∑
i∈Gr

vi + (1− α)wrpr and R = r}, proving Lemma 4.

Proof of Lemma 5: Assume without loss of generality that y > 0. The solution to Equation (35) has r

non-zero groups. We aim to prove that if {yi : i ∈ G1} is rejected, then the solution to

min
b̃
g(b̃) :=

1

2

∑
i∈G\G1

(ỹi − b̃i)2 + α
∑

i∈G\G1

ṽi|b̃|i + (1− α)

m−1∑
g=1

w̃g
√
p̃g‖b̃(g)‖2, (132)

has exactly r−1 non-zero groups. To prove this, we will prove it has at least and at most r−1 non-zero groups.

We again use proof by contradiction, as in Lemma 2.

At least r − 1 non-zero groups: Suppose by contradiction that b̂ has j − 1 non-zero groups, for j < r. Let

I = {Gg :
∑
i∈Gg

ỹi ≥
∑
i∈Gj

ỹi and
∑
i∈Gg

ỹi ≤
∑
i∈Gr−1

ỹi}. Denoting a new suboptimal solution as

ci =

h, i ∈ I

b̂i, otherwise,
(133)

where 0 < h < min{Gj−1}. By optimality, we should have g(b̂)− g(c) ≤ 0. However,

g(b̂)− g(c) ≥ h
∑
i∈I

ỹi −
1

2

∑
i∈I

h2 − αh
∑
i∈I

ṽi − (1− α)h

r−1∑
g=j

p̃gw̃g. (134)

The proof here is very similar to that of Lemma 2, so we will only observe the following three facts
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•
∑
i∈I ỹi ≥

∑
i∈I′ yi, where I ′ = {Gg :

∑
i∈Gg

yi ≥
∑
i∈Gj+1

yi and
∑
i∈Gg

yi ≤
∑
i∈Gr

yi}.

• w̃i = wi+1, by design.

• α
∑
i∈I ṽi ≤ α

∑
i∈I′ vi, as we are summing over more penalty terms in the latter.

Using these, and by setting h very small, we can apply Equation (118) to show that g(b̂)− g(c) > 0, which is a

contradiction, so that we must have at least r − 1 non-zero groups.

At most r − 1 non-zero groups: Suppose by contradiction that b̂ has j non-zero groups, with j ≥ r. We

again define an indicator set I = {Gg :
∑
i∈Gg

ỹi ≥
∑
i∈Gr

ỹi and
∑
i∈Gg

ỹi ≤
∑
i∈Gj

ỹi}, and a new suboptimal

solution

ci =

b̂i − h, i ∈ I

b̂i, otherwise,
(135)

with 0 < h < min{Gj}. Now,

g(b̂)− g(c) > −1

2

∑
i∈I

h2 − h
∑
i∈I

ỹi + αh
∑
i∈I

ṽi + (1− α)h

j∑
g=r

w̃gp̃g (136)

≥ −1

2

∑
i∈I

h2 − h
∑
i∈I

ỹi + (1− α)h

j∑
g=r

w̃gp̃g (137)

= −1

2

∑
i∈I

h2 − h
∑
i∈I′

yi + (1− α)h

j+1∑
g=r+1

wgpg, by definition, (138)

where I ′ = {Gg :
∑
i∈Gg

yi ≥
∑
i∈Gr+1

yi and
∑
i∈Gg

yi ≤
∑
i∈Gj+1

yi}. Now, by looking at the proof of Lemma

6, we see that we can bound α
∑
i∈Igj

vi ≥ 0, so that instead of obtaining Equation (118), we have

∑
i∈Igj

yi − (1− α)

j∑
g=r+1

wgpg ≤ 0. (139)

By picking h to be very small, from this we see that we must have g(b̂)− g(c) > 0, which is a contradiction, so

that the solution has at most r − 1 non-zero groups, proving the lemma.

C.3.1 Choice of penalty sequence We can now use Lemma 4 to define a penalty sequence for the groups. Our

aim is to choose wr such that

P(Hg
i rejected) = P

(∑
i∈Gr

|yi| > α
∑
i∈Gr

vi + (1− α)wrpr

)
≤ qgr

p
. (140)

For r ∈ {1, . . . ,m}, this is given by

wr =
F−1FN(1− qgr

p )− α
∑
i∈Gr

vi

(1− α)pr
. (141)

Again, taking the maximum gives

wr = max
g=1,...,m

{
F−1FN(1− qgr

p )− α
∑
i∈Gr

vi

(1− α)pg

}
. (142)
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C.4 Norm results

Lemma 7. For a vector x ∈ R+, p > 0, suppose we create another vector

y =

xi − h, i ∈M

xi, otherwise,
(143)

where 0 < h < mini∈M xi,M ⊂ {1, . . . , p}, |M | = m > 0. Then, the following two bounds hold

(i) ‖x‖2 − ‖y‖2 ≥ h
√
p− h

√
p−m ≥ hm

3
√
p
≥ 0. (144)

(ii) ‖x‖2 − ‖y‖2 ≥
h

2

‖x‖1,M
‖x‖2

≥ 0. (145)

For Bound (ii), we require a slightly stronger assumption on h; that is, 0 < h ≤ x̄/2.

Proof. For Bound (i): For i /∈M , we rewrite yi = xi − h+ h and denote vectors h̃ ∈ Rp, where h̃i = h,∀i, and

η ∈ Rp such that ηi = h for i /∈M and 0 otherwise. Then, we can rewrite y as y = x− h̃+ η. Using the triangle

inequality, we have

‖y‖2 = ‖x− h̃+ η‖2 ≤ ‖x− h̃‖2 − ‖η‖2. (146)

Therefore,

‖x‖2 − ‖y‖2 ≥ ‖x‖2 − ‖x− h̃‖ − ‖η‖2. (147)

For any i ∈ {1, . . . , p}, it holds xi − h̃i = xi(1− h/xi) ≤ xi(1− h/maxi∈{1,...,p} xi) = xi(1− h/‖x‖∞), so that

‖x− h̃‖2 ≤ ‖x(1− h/‖x‖∞)‖2. Therefore,

‖x‖2 − ‖x− h̃‖+ ‖η‖2 ≥ ‖x‖2 − ‖x(1− h/‖x‖∞)‖2 − ‖η‖2. (148)

Now, as (1− h/‖x‖∞) ∈ R is a real scalar, the reverse triangle inequality becomes an equality, so that

‖x‖2 − ‖x(1− h/‖x‖∞)‖2 = ‖x− x(1− h/‖x‖∞)‖2 (149)

= ‖xh/‖x‖∞‖2 (150)

=
h‖x‖2
‖x‖∞

. (151)

Additionally, we have ‖η‖2 =
√∑

i/∈M h2 =
√

(p−m)h2 = h
√
p−m. Therefore,

‖x‖2 − ‖y‖2 ≥
h‖x‖2
‖x‖∞

− h
√
p−m (152)

= h

(
‖x‖2
‖x‖∞

−
√
p−m

)
. (153)

As ‖x‖∞ ≥ p−1/2‖x‖2, it follows

‖x‖2 − ‖y‖2 ≥ h
(

‖x‖2
p−1/2‖x‖2

−
√
p−m

)
= h
√
p− h

√
p−m. (154)

Rewriting
√
p−
√
p−m as m√

p+
√
p−m , we obtain

‖x‖2 − ‖y‖2 ≥
hm

√
p+
√
p−m

≥ hm

2
√
p+
√
m
≥ hm

3
√
p
≥ 0. (155)

For Bound (ii): We can rewrite y as

‖y‖2 =

(∑
i/∈M

x2i +
∑
i∈M

(xi − h)2

)1/2

(156)
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=

(
p∑
i=1

x2i − 2h
∑
i∈M

xi +mh2

)1/2

(157)

=

(
‖x‖22 + h

(
mh− 2

∑
i∈M

xi

))1/2

(158)

=

(
‖x‖22

(
1 +

h

‖x‖22

(
mh− 2

∑
i∈M

xi

)))1/2

(159)

= ‖x‖2

1 +
h

‖x‖22

(
mh− 2

∑
i∈M

xi

)
︸ ︷︷ ︸

=:t


1/2

. (160)

Now, to apply Bernoulli’s inequality, we require

t =
h

‖x‖22

(
mh− 2

∑
i∈M

xi

)
≥ −1 (161)

=⇒ h

(
mh− 2

∑
i∈M

xi

)
≥ −‖x‖22 (162)

=⇒
∑
i∈M

x2i − 2h
∑
i∈M

xi +mh2 ≥ 0. (163)

It is clear that mh2 ≥ 0, so we only require∑
i∈M

(x2i − 2hxi) ≥ 0 (164)

=⇒
∑
i∈M

x2i ≥ 2h
∑
i∈M

xi (165)

=⇒
∑
i∈M

xi ≥ 2hm (166)

=⇒ h ≤ 1

2m

∑
i∈M

xi = x̄/2. (167)

Hence, assuming h ≤ x̄/2, we apply the Bernoulli inequality to obtain(
1 +

h

‖x‖22

(
mh− 2

∑
i∈M

xi

))1/2

≤ 1 +
h

2‖x‖22

(
mh− 2

∑
i∈M

xi

)
. (168)

Therefore,

‖y‖2 ≤ ‖x‖2 +
h

2‖x‖2

(
mh− 2

∑
i∈M

xi

)
. (169)

Hence,

‖x‖2 − ‖y‖2 ≥
h

2‖x‖2

(
2
∑
i∈M

xi −mh

)
(170)

=
h

2‖x‖2

(∑
i∈M

xi +
∑
i∈M

xi −mh

)
(171)

≥ h

2‖x‖2

(∑
i∈M

xi

)
, as

∑
i∈M

xi −mh ≥ 0 (172)

=
h‖x‖1,M

2‖x‖2
, where ‖x‖1,M =

∑
i∈M

xi, (173)

proving Bound (ii).
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Lemma 8. Suppose we have a vector x ∈ R+, p > 0, where M = {i : xi = 0}, |M | = m, and suppose further

that we create another vector

y =

h, i ∈M

xi, otherwise,
(174)

where 0 < h < mini∈M xi, and h ≤ 1. Then, the following bound holds

0 ≥ ‖x‖2 − ‖y‖2 ≥ −
hm

2‖x‖2
. (175)

Proof. The proof is similar to that of Lemma 7. We again rewrite y as

‖y‖2 =

(∑
i/∈M

x2i +
∑
i∈M

h2

)1/2

(176)

=
(
‖x‖22 + h2m

)1/2
(177)

= ‖x‖2
(

1 +
h2m

‖x‖22

)1/2

. (178)

Now, as f(x) =
√
x is a concave function, we can bound it from above using a linear approximation (obtained

by use of Taylor’s expansion) to give (
1 +

h2m

‖x‖22

)1/2

≤ 1 +
h2m

2‖x‖22
. (179)

Hence,

‖y‖2 ≤ ‖x‖2 +
h2m

2‖x‖2
(180)

=⇒ ‖x‖2 − ‖y‖2 ≥
−h2m
2‖x‖2

≥ −hm
2‖x‖2

, (181)

where the last inequality follows from h ≤ 1, proving the result.
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D Simulation study
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Fig. D1. Sensitivity shown as a function of decreasing sparsity proportion, for the SLOPE-based

models. This is shown for the different correlation cases and split by the type of selection, with

standard errors shown. 100 MC repetitions performed per sparsity proportion and correlation case.
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Fig. D2. Sensitivity shown as a function of decreasing p/n ratio, for the SLOPE-based models. This

is shown for the different correlation cases and split by the type of selection. 100 MC repetitions

performed per p/n ratio and correlation case.
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Fig. E1. Correct classification rate (%) (↑) shown for SGL, the lasso, and gLasso applied to the colitis

and cancer datasets, along a 100-λ regularisation path.
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Symbol Gene name Pathway β̂

NCK2 NCK adaptor protein 2 MIR6867 5P −0.432

SUZ12 Suppressor of zeste 12 homolog (Drosophila) MIR607 0.357

GOLGA8N Golgin subfamily A member 8N MIR3662 0.283

ARPC5L Actin related protein 2/3 complex, subunit 5-like MIR4659A 3P MIR4659B 3P 0.256

BASP1 Brain abundant, membrane attached signal protein 1 LET 7A 3P −0.179

C5AR1 Complement component 5a receptor 1 MIR153 5P −0.158

TMEM158 Transmembrane protein 158 MIR5582 3P −0.107

APP Amyloid beta (A4) precursor protein MIR3662 −0.0692

RAP1A RAP1A, member of RAS oncogene family MIR3662 −0.00356

Table E1: The nine active genes as found by the optimal SGS solution for the colitis dataset, given

with their estimated coefficient value.

Symbol Gene name Pathway β̂

COX6A1 Cytochrome C Oxidase Subunit 6A1 M40014 −0.678

SUSD3 Sushi Domain Containing 3 M40023 −0.665

TRIM46 Tripartite Motif Containing 46 M39067 −0.656

MMP10 Matrix Metallopeptidase 10 M41652 −0.638

CROCC Ciliary Rootlet Coiled-Coil, Rootletin M39136 −0.360

CD320 CD320 Molecule M39018 0.336

RAP1GAP2 RAP1 GTPase Activating Protein 2 M40014 −0.315

SLC37A1 Solute Carrier Family 37 Member 1 M39064 0.307

ACCS 1-Aminocyclopropane-1-Carboxylate Synthase Homolog (Inactive) M45728 −0.279

CABLES2 Cdk5 And Abl Enzyme Substrate 2 M39070 0.236

Table E2: The top ten active genes as found by the optimal SGS solution for the breast cancer

dataset, given with their estimated coefficients.
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Fig. E2. Left: correct classification rate (%) as a function of the number of predictors in the model,

for the optimal SGS model applied to the colitis dataset. The genes enter the model in order of their

effect size. Right: the probability of a patient having colitis, according to the fitted SGS model. The

decision boundaries are shown and the patients are grouped into whether they have the disease. Two

misidentifications can be observed.
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SGS Dataset information

Dataset Gene set Peak classification (%) # genes # pathways Pathway sizes Avg. pathway size

Colitis

C1 93.5 12321 292 [1,470] 42

C2 94.8 12091 1193 [1,888] 10

C3 97.4 12031 1408 [1,723] 9

C4 94.8 8482 613 [1,287] 14

C5 93.5 11555 614 [1,1034] 19

C6 93.5 8749 185 [1,169] 47

C7 96.1 12084 936 [1,172] 13

C8 94.8 11027 601 [1,1007] 18

H 97.4 3988 50 [8,193] 80

Cancer

C1 63.3 7233 287 [1,338] 25

C2 63.3 7145 1041 [1,449] 7

C3 66.7 7088 1132 [1,449] 6

C4 56.6 4106 475 [1,140] 9

C5 60.0 6636 548 [1,546] 12

C6 63.3 4529 183 [2,84] 25

C7 60.0 7163 896 [1,83] 8

C8 66.7 6375 550 [1,533] 12

H 53.3 583 217 [1,18] 3

Table E3: Peak correct classification rate (%) (↑) for SGS applied to all gene sets, alongside dataset

information for each gene set.
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