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Abstract

Tuning the regularization parameter in pe-
nalized regression models is an expensive
task, requiring multiple models to be fit along
a path of parameters. Strong screening rules
drastically reduce computational costs by
lowering the dimensionality of the input prior
to fitting. We develop strong screening rules
for group-based Sorted L-One Penalized Esti-
mation (SLOPE) models: Group SLOPE and
Sparse-group SLOPE. The developed rules
are applicable to the wider family of group-
based OWL models, including OSCAR. Our
experiments on both synthetic and real data
show that the screening rules significantly ac-
celerate the fitting process. The screening
rules make it accessible for group SLOPE and
sparse-group SLOPE to be applied to high-
dimensional datasets, particularly those en-
countered in genetics.

1 INTRODUCTION

As the amount of data collected increases, the emer-
gence of high-dimensional data, where the number of
features (p) is much larger than the number of obser-
vations (n), is becoming increasingly common in fields
ranging from genetics to finance. Performing regres-
sion and discovering relevant features on these datasets
is a challenging task, as classical statistical methods
tend to break down. The most popular approach to
meeting this challenge is the lasso (Tibshirani, 1996),
which has given rise to the general penalized regression
framework

β̂(λ) ∈ arg min
β∈Rp

{f(β) + λJ(β; v)} , (1)
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where f is a differentiable and convex loss function, J
is a convex penalty norm, v are penalty weights, and
λ > 0 is the regularization parameter.

A key aspect of fitting a penalized model is to tune the
value of λ along an l-length path λ1 ≥ . . . ≥ λl ≥ 0.
Several approaches exist for tuning this parameter, in-
cluding cross-validation (Homrighausen and McDon-
ald, 2018; Chetverikov et al., 2021) and exact solution
path algorithms (Efron et al., 2004), but these can
be computationally expensive. Screening rules help
alleviate these costs by discarding variables that are
inactive at the optimal solution, thus reducing input
dimensionality prior to optimization.

Denote the active set of coefficients at path point λk+1,
for k ∈ [l−1] := {1, . . . , l−1}, by Av(λk+1) = {i ∈ [p] :

β̂i(λk+1) ̸= 0}. The goal of a (sequential) screening
rule is to use the solution at λk to recover a screened set
of features, Sv(λk+1), which is a superset of Av(λk+1).
The screened set is then used as input for calculating
the fitted values, leading to significant computational
savings.

There are two types of screening rules: safe and heuris-
tic. Safe rules are guaranteed to only discard inactive
variables and mostly follow the Safe Feature Elimi-
nation (SAFE) framework (El Ghaoui et al., 2010), in
which safe regions for variables are constructed. Other
notable examples include Slores (Wang et al., 2014),
the dome test (Xiang and Ramadge, 2012), and Dual
Polytope Projections (DPP) (Wang et al., 2013), as
well as sample screening (Shibagaki et al., 2016) and
other examples given in Ogawa et al. (2013); Fercoq
et al. (2015); Atamturk and Gomez (2020).

Heuristic rules tend to follow the strong screening
rule framework, proposed by Tibshirani et al. (2010),
and discard considerably more variables than safe
rules. However, they can incorrectly discard ac-
tive variables, so are complemented by a check of
the Karush–Kuhn–Tucker (KKT) (Kuhn and Tucker,
1950) stationarity conditions. Other strong rules in-
clude Blitz (Johnson and Guestrin, 2015), SIS (Fan
and Lv, 2008), and ExSIS (Ahmed and Bajwa, 2019).
Hybrid schemes exist, using both safe and heuristic
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rules (Zeng et al., 2021; Wang and Breheny, 2022).

A strong screening rule is formulated through the KKT
stationarity conditions for Equation 1, given by

0 ∈ ∇f(β) + λ∂J(β; v). (2)

If the gradient were available, the active set could be
identified exactly by checking the subdifferential of the
norm at zero:

∇f(β) ∈ λ∂J(0; v) = {x ∈ Rp : J∗(x;λv) ≤ 1}, (3)

where J∗ is the dual norm of J and ∂J(0; v) is the unit
ball of the dual norm. So, J∗(∇f(β);λv) ≤ 1 indicates
that β = 0. As the gradient at λk+1 is not available, a
model-specific approximation of the gradient is derived
to find a screened subset of the features, Sv(λk+1),
such that Av(λk+1) ⊂ Sv(λk+1).

1.1 Screening Approaches for SLOPE

As the lasso is inconsistent under certain scenarios
(Zou, 2006), several adaptive extensions have been
proposed, including the Sorted L-One Penalized Esti-
mation (SLOPE) model (Bogdan et al., 2015). SLOPE
applies the sorted ℓ1 norm Jslope(β; v) =

∑p
i=1 vi|β|(i),

where v1 ≥ . . . ≥ vp ≥ 0, |β|(1) ≥ . . . ≥ |β|(p). One
key advantage of SLOPE is its ability to control the
variable false discovery rate (FDR) under orthogonal
data. Additional powerful properties include: it clus-
ters strongly correlated features, it finds the minimum
total squared error loss across different sparsity levels,
removing the need for prior knowledge of sparsity, and
it is asymptotically minimax (Figueiredo and Nowak,
2014; Su and Candès, 2016). All of these useful prop-
erties have meant that SLOPE has found widespread
use in machine learning and genetics (Gossmann et al.,
2015; Virouleau et al., 2017; Kremer et al., 2020;
Frommlet et al., 2022; Riccobello et al., 2023).

Both safe (Bao et al., 2020; Elvira and Herzet, 2021)
and strong (Larsson et al., 2020) rules have been pro-
posed for SLOPE, as well as exact solution path algo-
rithms (Nomura, 2020; Dupuis and Tardivel, 2023). As
SLOPE is a non-separable penalty, safe screening re-
quires repeated screening during optimization, which
is expensive due to the repeated dual norm evaluations
required for the safe regions (Larsson et al., 2020).

Group-based SLOPE Models In genetics, the
analysis of grouped features is frequently encountered,
as genes are grouped into pathways for the comple-
tion of a specific biological task. To use this grouping
information, SLOPE has been extended to group (gS-
LOPE) and sparse-group (SGS) regression.

For a set of m non-overlapping groups, G1, . . . ,Gm of
sizes p1, . . . , pm, Group SLOPE (gSLOPE) (Gossmann

et al., 2015; Brzyski et al., 2019) is given by

Jgslope(β;w) =

m∑
g=1

√
pgwg∥β(g)∥2, (4)

such that β(g) ∈ Rpg is a vector of the group co-
efficients. The norm has ordered penalty weights
w1 ≥ . . . ≥ wg ≥ 0 (described in Appendix A.1) which
are matched to

√
p1∥β(1)∥2 ≥ . . . ≥ √pm∥β(m)∥2.

Sparse-group SLOPE (SGS) (Feser and Evangelou,
2023) was further proposed as a convex combination
of SLOPE and gSLOPE for concurrent variable and
group selection. For α ∈ [0, 1], with weights (v, w)
(described in Appendix B.1), the norm is given by

Jsgs(β;α, v, w) = αJslope(β; v) + (1− α)Jgslope(β;w).

Both approaches control the FDR under orthogonal
data: gSLOPE at the group-level (Brzyski et al., 2019)
and SGS at both levels (Feser and Evangelou, 2023).
SGS has been found to outperform other methods at
selection and prediction (Feser and Evangelou, 2023).

1.2 Contributions

No screening rules exist for group-based SLOPE mod-
els. The strong screening rule framework introduced
by Tibshirani et al. (2010) facilitated the extension
from the lasso to the group lasso by requiring only
knowledge of the dual norm. However, this framework
is restricted to separable penalties, making it unsuit-
able for SLOPE. Instead, in Larsson et al. (2020), the
subdifferential of SLOPE is used to derive strong rules.

Motivated by this, we propose a new strong screening
framework for sparse-group norms (Section 2), used
to develop screening for gSLOPE (Section 3) and SGS
(Section 4) (with proofs of the results provided in Ap-
pendices A.3 and B.3). The framework applies two
screening layers, drastically reducing dimensionality
(Figure 1). The screening requires knowledge of the
subdifferentials, necessitating a general derivation for
gSLOPE (Theorem 3.1).

The choice of strong screening over safe is motivated
by two main reasons. First, strong rules discard sig-
nificantly more variables than safe rules (Tibshirani
et al., 2010). Second, safe rules require calculating the
dual norm set. For SGS, this is a sum of convex sets.
Determining if a point lies in this set requires knowl-
edge of the summation’s decomposability, which is a
difficult task (Wang and Ye, 2014). This challenge is
addressed in Section 4.1.

The analysis of synthetic and real datasets shows that
our proposed screening rules considerably improve
runtime (Section 6). The reduced input dimension-
ality from the screening also eases convergence issues
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Figure 1: The proportion of variables in Sv relative to
p for group-only and bi-level screening applied to SGS,
plotted along the regularization path with 95% confi-
dence intervals. Synthetic data was generated under
a linear model for p = 500, 5000 (Section 6.1), with
results averaged over 100 repetitions.

with large datasets. These improvements are achieved
without affecting solution optimality.

As the proposed screening rules only require that the
penalty sequences (v, w) are ordered, they apply to
the wider class of group-based Ordered Weighted ℓ1
(OWL) models. Popular special cases of OWL mod-
els include SLOPE and the Octagonal Shrinkage and
Clustering Algorithm for Regression (OSCAR) model
(Bondell and Reich, 2008) (the description of group-
based OSCAR models is provided in Section 5).

Notation The sets of active and inactive groups are
given by Ag = {g ∈ [m] : ∥β̂(g)∥2 ̸= 0} and Z = {g ∈
[m] : ∥β̂(g)∥2 = 0}. Their corresponding set of variable
indices are denoted by GA and GZ . The cardinality of a
vector x is denoted by card(x). The operators (·)↓ and
(·)|↓| sort a vector into decreasing and decreasing abso-
lute form. We use ⪯ to denote element-wise inequality
signs. The operator O(·) returns the index of a vector
sorted into decreasing absolute form. The cumulative
summation operator applied on a vector is denoted by

cumsum(x) = [x1, x1 + x2, . . . ,
∑card(x)

i=1 xi].

2 SPARSE-GROUP STRONG
SCREENING

Sparse-group models, such as SGS and the sparse-
group lasso (SGL) (Simon et al., 2013), apply both
variable and group penalization so that bi-level screen-
ing is possible. Safe rules that perform bi-level screen-
ing exist for SGL (Wang and Ye, 2014; Ndiaye et al.,
2016a), but there are no such strong rules. The strong
screening framework (Tibshirani et al., 2010) does not
extend to sparse-group or non-separable norms, and
the strong rule derived for SGL in Liang et al. (2022)

applies only group-level screening.

Framework We introduce a new sparse-group
framework (Algorithm 1), based on the strong frame-
work by Tibshirani et al. (2010), for applying strong
screening to sparse-group norms, allowing for bi-level
screening. By applying bi-level screening for SGS, a
substantially larger proportion of variables are dis-
carded than with group screening alone (Figure 1).

First, a screened set of groups is computed, Sg. An
additional layer of screening is then performed to com-
pute Sv using Sg. This, combined with the previously
active variables, forms the reduced input set for fit-
ting, Ev. KKT checks are performed on Ev to ensure
no violations have occurred (Appendices A.4 and B.4).
Based on this framework, the SGS rules are derived in
Section 4. The screening for gSLOPE (Section 3) also
uses this framework but does not perform the variable
screening and instead takes Sv as all variables in the
groups of Sg. The KKT checks are then performed
only on the groups. Appendix D describes the imple-
mentation of the framework for gSLOPE and SGS.

The main cost of the framework is calculating the fit-
ted values. For t iterations of ATOS (a proximal al-
gorithm used to fit SGS, see Section 6.1), the conver-
gence rate is O(1/t) (Pedregosa and Gidel, 2018) and
we expect a time complexity of O(tp2) for a proximal
algorithm (Zhao and Huo, 2023).

Algorithm 1 Sparse-group screening framework

Input: (λ1, . . . , λl) ∈ Rl, X ∈ Rn×p, y ∈ Rn

for k = 1 to l − 1 do
Sg(λk+1) ← group screening on full input
Sv(λk+1) ← variable screening on g ∈ Sg(λk+1)
Ev ← Sv(λk+1) ∪ Av(λk)

compute β̂Ev
(λk+1)

Kv ← variable KKT violations on β̂(λk+1)
while card(Kv) > 0 do
Ev ← Ev ∪ Kv

compute β̂Ev
(λk+1)

Kv ← variable KKT violations on β̂(λk+1)
end while

end for
Output: β̂(λ1), . . . , β̂(λl) ∈ Rp

3 GROUP SLOPE

The strong rule for gSLOPE is formulated by check-
ing the zero condition of the subdifferential (as per
Equation 3) derived in Theorem 3.1. To derive the
subdifferential, we define the operator

[b]G,q := (pq1∥b(1)∥2, . . . , pqm∥b(m)∥2)⊤.
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In particular, [b]GZ ,−0.5 is the operator applied only to
the inactive groups using the quotient q = −0.5.

Theorem 3.1 (gSLOPE subdifferential). The subdif-
ferential for gSLOPE is given by

∂Jgslope(β;w) =


{
x ∈ RcardGZ :

[x]GZ ,−0.5 ∈ ∂Jslope(0;wZ)
}
,
at 0.{

wg
√
pg

β(g)

∥β(g)∥2

}
, otherwise.

The choice of q = −0.5 leads to J∗
gslope(x;w) =

J∗
slope([x]G,−0.5), which allows the gSLOPE subdif-

ferential to be written in terms of the SLOPE one
(Brzyski et al., 2019). Combining the KKT conditions
at zero (Equation 3) with the gSLOPE subdifferen-
tial (Theorem 3.1) reveals that a group is inactive if

h(λ) := ([∇f(β̂(λ))]G,−0.5)↓ ∈ ∂Jslope(0;λw). Using
the subdifferential of SLOPE (Appendix A.2) (Lars-
son et al., 2020), this is given by

cumsum(h(λ)− λw) ⪯ 0. (5)

This condition is checked efficiently using the algo-
rithm proposed for the SLOPE strong rule (Algorithm
A1) leading to the strong rule for gSLOPE (Proposi-
tion 3.2). The algorithm assumes that the indices for
the inactive predictors will be ordered last in the input
c and the features |β̂|↓ (Larsson et al., 2020).

Proposition 3.2 (Strong screening rule for gSLOPE).
Taking c = h(λk+1) and ϕ = λk+1w as inputs for
Algorithm A1 returns a superset Sg(λk+1) of the active
set Ag(λk+1).

The gradient at path index k + 1 is not available for
the computation of h(λk+1), so an approximation is
required that does not lead to any violations in Algo-
rithm A1. By the cumsum condition in this algorithm,
an approximation for a group g ∈ [m] is sought such
that hg(λk+1) ≤ hg(λk) + Rg, where Rg ≥ 0 needs to
be determined. An approximation is found by assum-
ing that hg(λk+1) is a Lipschitz function of λk+1 with
respect to the ℓ1 norm, that is,

|hg(λk+1)− hg(λk)| ≤ wg|λk+1 − λk|.
By again noting that J∗

gslope(x) = J∗
slope([x]G,−0.5), it

can be seen that the assumption is equivalent to the
Lipschitz assumptions used for the lasso and SLOPE
strong rules (Tibshirani et al., 2010; Larsson et al.,
2020). By the reverse triangle inequality,

|hg(λk+1)| ≤ |hg(λk)|+ λkwg − λk+1wg,

leading to the choice Rg = λkwg − λk+1wg and the
gradient approximation strong screening rule (Propo-
sition 3.3). To apply gSLOPE screening in practice
(Section 6.1), Proposition 3.4 describes the calculation
of the first path value.

Proposition 3.3 (Gradient approximation strong
screening rule for gSLOPE). Taking c = h(λk)+λkw−
λk+1w and ϕ = λk+1w as inputs for Algorithm A1,
and assuming that for any k ∈ [l − 1],

|hg(λk+1)− hg(λk)| ≤ wg|λk+1 − λk|, ∀g = [m],

and O(h(λk+1)) = O(h(λk)), then the algorithm re-
turns a superset Sg(λk+1) of the active set Ag(λk+1).

Proposition 3.4 (gSLOPE path start). For gSLOPE,
the path value at which the first group enters the model
is given by

λ = max
{

cumsum
(
([∇f(0)]G,−0.5)↓

)
⊘ cumsum(w)

}
,

where ⊘ denotes Hadamard division.

4 SPARSE-GROUP SLOPE

This section presents the group and variable screen-
ing rules for SGS. They are derived using the SGS
KKT conditions, formulated in terms of SLOPE and
gSLOPE (by the sum rule of subdifferentials):

∇f(β) ∈ λα∂Jslope(β; v)+λ(1−α)∂Jgslope(β;w). (6)

4.1 Group Screening

For inactive groups, the KKT conditions (Equation 6)
for SGS are

(∇f(β) + λα∂Jslope(0; v))GZ ∈ λ(1− α)∂Jgslope(0;wZ),

=⇒
Equation 5

cumsum
((

[∇f(β) + λα∂Jslope(0; v)]GZ ,−0.5

)
↓

− λ(1− α)wZ
)
⪯ 0. (7)

The problem reduces to a form similar to the gSLOPE
screening rule (Section 3), with inputs for Algorithm
A1 given by c = ([∇f(β)+λα∂Jslope(0; v)]G,−0.5)↓ and
ϕ = λ(1− α)w.

To determine the form of the quantity ∂Jslope(0; v),
the term inside the [·]GZ ,−0.5 operator needs to be as
small as possible for Equation 7 to be satisfied. This
term is found to be the soft thresholding operator,
S(∇f(β), λαv) := sign(∇f(β))(|∇f(β)| − λαv)+ by
Lemma 4.1 (see Appendix B.2 for the proof).

Lemma 4.1. In Equation 7, choosing ∂Jslope(0; v) =
S(∇f(β), λαv) minimises [∇f(β) + λα∂Jslope(0; v)]G.

By using the soft-thresholding operator, a valuable
connection between SGS and SGL is found, as the op-
erator is used in the gradient update step for SGL (Si-
mon et al., 2013). This connection has the potential to
lead to new and more efficient optimization approaches
for SGS that are more closely related to those used to
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solve SGL, similar to the recent coordinate descent al-
gorithm for SLOPE (Larsson et al., 2022).

Using this operator, the (non-approximated) strong
group screening rule for SGS is shown in Proposition
B.1. Applying a similar Lipschitz assumption as for
the gSLOPE rule gives the gradient approximation
strong group screening rule for SGS (Proposition 4.2).

Proposition 4.2 (Gradient approximation strong
group screening rule for SGS). Let h̃(λ) :=

([S(∇f(β̂(λ)), λαv)]G,−0.5)↓. Taking c = h̃(λk) +
λk(1− α)w− λk+1(1− α)w and ϕ = λk+1(1− α)w as
inputs for Algorithm A1, and assuming that for any
k ∈ [l − 1],∣∣∣h̃g(λk+1)− h̃g(λk)

∣∣∣ ≤ (1−α)wg|λk+1−λk|, ∀g = [m],

and O(h̃(λk+1)) = O(h̃(λk)), then the algorithm re-
turns a superset Sg(λk+1) of the active set Ag(λk+1).

4.2 Variable Screening

By exploiting the sparse-group norm of SGS, the in-
put dimensionality can be reduced further with a sec-
ond layer of variable screening. The KKT conditions
(Equation 6) for zero variables in active groups are

∇GAg
f(β) ∈ λα∂Jslope(0; vGAg

). (8)

The gSLOPE subdifferential term vanishes as the nu-
merator is zero in Theorem 3.1. The problem reduces
to that of SLOPE screening, applied to the variables in
groups in Ag and scaled by α. The gradient approxi-
mated rule is shown in Proposition 4.3 (see Proposition
B.2 for the non-approximated version).

Proposition 4.3 (Gradient approximation strong
variable screening rule for SGS). Let h̄(λ) :=

(∇f(β̂(λ)))|↓|. Taking c = |h̄(λk+1)|+ λkαv− λk+1αv
and ϕ = λk+1αv for the variables in the groups in
Ag(λk+1) as inputs for Algorithm A1, and assuming
that for any k ∈ [l − 1],∣∣h̄j(λk+1)− h̄j(λk)

∣∣ ≤ αvj |λk+1 − λk|,∀j ∈ GAg(λk+1),

and O(h̄(λk+1)) = O(h̄(λk)), then the algorithm re-
turns a superset Sv(λk+1) of Av(λk+1).

In practice Ag(λk+1) is not available, as this is exactly
what we are trying to superset with any screening rule.
However, Proposition 4.2 guarantees that it is con-
tained in Sg(λk+1) so that this can be used instead.
To apply SGS in practice (Section 6.1), Proposition
4.4 describes the calculation of the first path value.

Proposition 4.4 (SGS path start). For SGS, the path
value at which the first variable enters the model is

λ = max{cumsum(|∇f(0)|↓)⊘
cumsum((1− α)τω − αv)},

where τ and ω are expanded vectors of the group sizes
(
√
pg) and penalty weights (wg) to p dimensions.

5 GROUP-BASED OWL

The screening rule framework presented are also appli-
cable to the wider class of OWL models. The Ordered
Weighted ℓ1 (OWL) framework is defined as (Zeng and
Figueiredo, 2014a)

β̂ ∈ arg min
β∈Rp

{∇f(β) + λJowl(β; v)} ,

where Jowl(β; v) =
∑p

i=1 vi|β|(i), |β|(1) ≥ . . . ≥
|β|(p), and v are non-negative non-increasing weights.
SLOPE is a special case of OWL where the weights
are taken to be the Benjamini-Hochberg critical val-
ues (Bogdan et al., 2015). Octagonal Shrinkage and
Clustering Algorithm for Regression (OSCAR) (Bon-
dell and Reich, 2008) is a further special case of OWL
(often referred to as OWL with linear decay) where
for a variable i ∈ [p], the weights are taken to be
vi = σ1+σ2(p−i), and σ1, σ2 are to be set. In Bao et al.
(2020) they are set to σ1 = di∥X⊤y∥∞, σ2 = σ1/p,
where di = i × e−2, X⊤ ∈ Rn×p is the design matrix,
and y ∈ Rn is the response vector.

Group OSCAR (gOSCAR) and Sparse-group OSCAR
(SGO) are defined using the frameworks provided by
gSLOPE (Brzyski et al., 2019) and SGS (Feser and
Evangelou, 2023), respectively, but instead use the OS-
CAR weights (see Appendix E.1).

6 RESULTS

This section illustrates the effectiveness of the screen-
ing rules for gSLOPE and SGS using synthetic (Section
6.1) and real (Section 6.2) data. References to E ,A for
group and variable metrics denote Eg,Ag and Ev,Av.
For SGS, Eg represents groups with members in Ev.

6.1 Synthetic Data Analysis

Set up A multivariate Gaussian design matrix, X ∼
N (0,Σ) ∈ R400×p, was used and the within-group
correlation set to Σi,j = ρ, where i and j belong to
the same group. The correlation and number of fea-
tures were varied between ρ ∈ {0, 0.3, 0.6, 0.9} and
p ∈ {500, 1625, 2750, 3875, 5000}, producing 20 sim-
ulation cases. Each simulation case was repeated 100
times. Two models were considered: linear and logis-
tic. For the linear model, the output was generated as
y = Xβ +N (0, 1) and for the logistic model the class
probabilities were calculated using σ(Xβ + N (0, 1)),
where σ is the sigmoid function. Groups of sizes be-
tween 3 and 25 were considered, of which 15% were
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Figure 2: The proportion of groups/variables in E ,A,
relative to the input, for both gSLOPE and SGS as
a function of the path for the linear model with p =
2750, ρ = 0.6,m = 197. The results are averaged over
100 repetitions, with 95% confidence intervals shown.

set to active. Within each active group, 30% of the
variables were set to active with signal β ∼ N (0, 5).
gSLOPE and SGS were fit along a log-linear path of
50 regularization parameters using warm starts, begin-
ning at λ1 (from Propositions 3.4 and 4.4), and ending
at λ50 = 0.05λ1. The data was ℓ2 standardized and for
the linear model an intercept was used. Both models
had FDR-control parameters set to 0.05, and α = 0.95
for SGS. The models were fit using the adaptive three
operator splitting (ATOS) algorithm (Pedregosa and
Gidel, 2018), although the screening rules can be ap-
plied with any fitting algorithm. Additional computa-
tional details are in Appendix F.1.

Primarily, the results for the linear model are pre-
sented, and the results for the logistic model are in
Appendix F.3.2. The simulations were repeated for
group-based OSCAR models (Appendix E).

Screening Efficiency By comparing the sizes of the
fitting set (E) to the active set (A), the screening rules
are found to be efficient in providing dimensionality
reduction close to the minimum possible (the active

Table 1: Runtime (in seconds) for fitting 50 models
along a path, shown for screening against no screen-
ing, for the linear and logistic models. The results
are averaged across all cases of the correlation (ρ) and
dimensionality (p), with standard errors shown.

Method Type Screen (s) No screen (s)

gSLOPE Linear 1016± 21 1623± 27
gSLOPE Logistic 814± 8 1409± 11
SGS Linear 735± 15 1830± 34
SGS Logistic 407± 2 859± 6
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Figure 3: The proportion of groups/variables in E ,A,
relative to the full input, shown for gSLOPE and SGS.
This is shown as a function of the correlation (ρ), av-
eraged over all cases of the input dimension (p), with
100 repetitions for each p, for both linear and logistic
models, with standard errors shown.

set size) (Figures 2 and A9). As expected, the sets
increase in size as λ decreases, and the difference in
size between the sets remains stable along the path,
decreasing towards the termination point. The size of
the fitting set remains far below the input size across
the whole path, showing the benefit of the screening.
This is found to be true for any correlation, input di-
mensionality, and model considered (Appendix F.3).

The screening rules perform well for linear and logis-
tic models (Figure 3), showing robust dimensionality
reduction for all correlation cases considered. As the
correlation increases, the signal concentrates in fewer
groups, causing the active group set to decrease in size.
SLOPE models deal well with highly correlated fea-
tures, as the sorted norm clusters them together (Zeng
and Figueiredo, 2014b).

The screening rules are found to efficiently reduce the
input dimensionality on average across all cases con-
sidered (Table 2).

Runtime Performance A key metric of perfor-
mance for a screening rule is the time taken to fit a
path of models. Figure 4 shows the significant runtime
improvements our screening rules provide as a func-
tion of increasing input dimensionality. The gain is
observed to be substantial under all correlation cases.
Applying screening improves the scaleability of apply-
ing gSLOPE and SGS models to larger datasets.

The clear benefit and robustness of our screening
method, with regards to runtime, can be seen by ag-
gregating the results of all the simulation cases (Ta-
ble 1). For both models, in the linear and logistic
cases, screening substantially improves the computa-
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tion cases, for the linear model. The results are aver-
aged over 100 repetitions, with standard errors shown.

tional cost, halving the runtime for SGS models.

6.2 Real Data Experiments

Datasets The screening rules were applied to seven
real gene datasets, of different response types and
dimensionality. Two of the datasets, carbotax and
sheetz, had a continuous response so were fit using
a linear model. For these, the groups were generated
using K-means clustering (Lloyd, 1982). The remain-
ing five (adenoma, cancer, celiac, colitis, and tumour),
had binary labels, so a logistic model was used. For
these, the design matrices contained gene expression
data downloaded from NCBI’s GEO database (Edgar
et al., 2002), so the genes could be assigned to path-
ways (groups) using the C3 regulatory target gene
sets from MSigDB (Subramanian et al., 2005; Liber-
zon et al., 2011). All datasets were high-dimensional.
See Appendix F.4 for full details.

Both gSLOPE and SGS were fit with their FDR-
control parameters set to 0.01 and for SGS α = 0.99.
Each model was applied along a path of 100 regular-
ization parameters, with λ100 = 0.01λ1. Table A1 de-
scribes the algorithmic parameters used for ATOS.

Results For both gSLOPE and SGS, the screen-
ing rules led to considerably faster runtimes for all
datasets (Figure 5). The screening was more effective
for SGS under a linear model and for gSLOPE un-
der a logistic model. The active set sizes for gSLOPE
tended to be smaller for the logistic models, allowing
for larger feature reduction (Table 2). For SGS, this
trend went the other way; the active sets were smaller
for the continuous datasets. Another explanation for
the reduced screening efficiency for gSLOPE under lin-
ear models was due to the grouping structure. For the
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Figure 5: The ratio of no screen time to screen time
(↑) of gSLOPE and SGS applied to the real datasets,
for fitting 100 path models, split into response type.
The horizontal grey line represents no screening im-
provement.

continuous responses, the groups were generated using
K-means clustering, leading to fewer groups and less
opportunity for dimensionality reduction (Table A8).
With fewer groups, gSLOPE is less likely to discard
full groups, as they may contain some signal.

The feature reduction provided by our screening rules
led to the alleviation of convergence issues (Table
A10). SGS failed to converge for three datasets with-
out screening and none with screening. gSLOPE expe-
rienced failed convergences across all datasets without
screening, while with screening, it only failed to con-
verge for three datasets, each showing fewer instances
of failure. As gSLOPE applies no variable penaliza-
tion, it is forced to fit all variables within a group. For
datasets with large groups, such as those considered
here, this leads to a problematic fitting process which
can include many noisy variables. Our screening rules
help gSLOPE partially overcome this issue, leading to
large computational savings and better solution opti-
mality.

The analysis of the real data further illustrates the
benefits of the bi-level screening to the runtime and
performance of SGS (for synthetic data, see Figure
1). Figure 6 illustrates that for the cancer and celiac
datasets, the bi-level screening allows the input dimen-
sionality for SGS to be reduced to a much greater ex-
tent than by just group screening (see Figure A17 for
the other datasets).

Both screening rules drastically reduce the input di-
mensionality on all the real datasets (Table 2). On
average, for the logistic real data models, the SGS
screening rules reduced the input to just 7% of the to-
tal space. This comes without affecting solution con-
sistency (Appendices F.2 and F.5). For additional
metrics and comparison to the SLOPE strong rule for
the real datasets, see Figures A14, A15, and A16. Our
rules for gSLOPE and SGS are found to offer similar
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levels of runtime improvements and feature reduction
to that of SLOPE (Larsson et al., 2020).

6.3 KKT Violations

As with any strong screening rule, our approach de-
pends on assumptions that may fail. When this hap-
pens, KKT checks are used to ensure no active vari-
ables are excluded, with violations added to Ev. For
SGS, KKT violations occur at a variable-level (Ap-
pendix B.4) and for gSLOPE at a group-level (Ap-
pendix A.4).

KKT violations are very rare for gSLOPE (Figure 7),
occurring on the simulated data infrequently toward
the start of the path. On the real data, only a single
dataset had violations, and the number of violations
was very small (Table A10).

For SGS, KKT violations are more common, but still
infrequent (Figure 7 and Tables A9) due to additional
assumptions in the second layer of screening. In Equa-
tion 7, minimizing the subdifferential term leads to
tighter screened sets, contributing to these violations.
In Figure 7, the number of violations increases as a

Table 2: The cardinality of the active (A) and fitting
(E) sets for gSLOPE and SGS, averaged across all syn-
thetic and real data cases, split into model type. For
gSLOPE, the cardinality is for the group sets, and for
SGS the variable ones. Dim. is the input dimension-
ality. For synthetic, it was p = 2750 and m = 210.

Synthetic Real

Method Type A E A E Dim.

gSLOPE Lin. 55±1 76±1 112±3 168±3 240
gSLOPE Log. 71±1 97±1 49±2 83±3 1634
SGS Lin. 178±3 364±6 378±37 1139±87 14488
SGS Log. 230±3 472±6 526±5 979±13 13734
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Figure 7: The proportion of KKT violations relative
to the full input for gSLOPE and SGS, under linear
models, averaged over all synthetic data cases. This is
shown as a function of the regularization path.

function of the model density for SGS, mirroring the
log-linear shape of the regularization path. This pat-
tern is also seen in the strong rule for SLOPE (Larsson
et al., 2020).

Despite these violations and the computational cost
of the checks and refitting (Algorithm 1), the overall
screening process yields significant runtime improve-
ments in all cases (Table 1 and Figure 5).

7 DISCUSSION

In this manuscript, we have developed strong screen-
ing rules for group-based SLOPE models using our
new sparse-group strong screening framework: Group
SLOPE and Sparse-group SLOPE, neither of which
have any previous screening rules. Our proposed
screening rules differ from the existing SLOPE strong
rule both in construction and in outcome. The screen-
ing rule for gSLOPE screens out irrelevant groups be-
fore fitting. The screening rules for SGS perform bi-
level screening. Our rules apply to the wider class of
OWL models, including group-based OSCAR models.

SLOPE models are finding increasing use in genetics
and machine learning, with SGS found to have superior
disease prediction performance over other penalized
methods (Feser and Evangelou, 2023). Our screening
rules will make the group-based versions more accessi-
ble by reducing their computational burden. This will
allow practitioners to utilize their FDR properties, fa-
cilitating their widespread use across various fields.

Through comprehensive analysis of synthetic and real
data, we illustrate that the screening rules lead to dra-
matic improvements in the runtime of gSLOPE and
SGS models, as well as for group-based OSCAR mod-
els (Appendix E). This is achieved without affecting
model accuracy. This is particularly important in
datasets where p ≫ n, such as genetics ones, which
is the main motivation behind the proposal of SLOPE
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(Bogdan et al., 2015). The screening rules presented in
this manuscript allow group-based SLOPE, and more
generally group-based OWL models, to achieve com-
putational fitting times more in line with their lasso-
based counterparts. The screening rules also helped
gSLOPE and SGS overcome convergence issues in
large datasets, improving solution optimality.

In our data studies, we have not discovered any sce-
nario where our screening rules did not perform better
than no screening. In each case, the rules greatly re-
duce the input dimensionality and speed up the com-
putational runtime.

Limitations Our screening rules, as any strong rule,
rely on assumptions. For both gSLOPE and SGS, Lip-
schitz assumptions were used that are consistent with
those used in the strong screening framework (Tibshi-
rani et al., 2010). For gSLOPE, a Lipschitz assumption
was used to derive Proposition 3.3, while for SGS, a
separate Lipschitz assumption was made for each layer
of screening (Propositions 4.2 and 4.3).

Violations of these assumptions are checked for using
the KKT conditions. The SGS KKT checks (Appendix
B.4) led to an increased number of violations, as the
checks were overly conservative. However, the overall
amount of KKT violations for both models was still
relatively small, suggesting that these assumptions are
not overly restrictive.

An attempt was made to derive less conservative
checks (Appendix B.4.3), performed directly on the
variables without an initial group check. These were
found to be too lenient, incorrectly missing violations.
Future work can consider alternative KKT checks.

An additional future direction includes the develop-
ment of safe rules, which guarantee that only inactive
variables are discarded. These could be incorporated
into a hybrid scheme together with our strong rules
(Zeng et al., 2021; Wang and Breheny, 2022). Deriv-
ing safe rules would facilitate a comparison between
them and our proposed strong rules, offering further
insight into which type of screening is most effective
for both non-separable and sparse-group norms.
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Strong Screening Rules for Group-based SLOPE Models:
Supplementary Materials

A GROUP SLOPE

A.1 Penalty Weights

The penalty weights for gSLOPE were derived to provide group FDR-control under orthogonal designs (Brzyski
et al., 2019). For the FDR-control parameter qg ∈ (0, 1), they are given by (where the indexing corresponds to
the sorted groups)

wmax
i = max

j=1,...,m

{
1
√
pj

F−1
χpj

(1− qgi/m)

}
, for i = 1, . . . ,m,

where Fχpj
is the cumulative distribution function of a χ distribution with pj degrees of freedom. A relaxtion

to this sequence is applied in Brzyski et al. (2019) to give

wmean
i = F

−1

χpj
(1− qgi/m), where Fχpj

(x) :=
1

m

m∑
j=1

Fχpj
(
√
pjx). (9)

The mean sequence weights defined in Equation 9 are used for all gSLOPE numerical simulations in this
manuscript (shown in Figure A1).
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Figure A1: The gSLOPE weights, w, shown for Figure 4 for p = 500,m = 100, qg = 0.05.
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A.2 SLOPE Subdifferential

The subdifferential for SLOPE was derived in Larsson et al. (2020) and as it is a vital part of our arguments, it
is reproduced here for ease of reference.

Define the function R : Rp → Np that returns the ranks of the absolute values of its input and the set Ci(β) =
{j ∈ {1, . . . , p} : |βi| = |βj |}. Then, the subdifferential is given by (Larsson et al., 2020)

∂Jslope(β; v) =



{
x ∈ R|Ci| : cumsum(|x|↓ − vR(x)Ci

) ⪯ 0
}

if βCi
= 0,{

x ∈ R|Ci| : cumsum(|x|↓ − vR(x)Ci
) ⪯ 0

and
∑

j∈Ci
(|xj | − vR(s)j ) = 0

and sign(βCi
) = sign(x)

}
otherwise.

The primary use of the subdifferential in this manuscript is the zero condition (Equation 5).

A.3 Theory

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.7 in Brzyski et al. (2019), where the subdiffer-
ential of gSLOPE is derived under equal groups. It is derived here under more general terms. The subdifferential
needs to be derived under two cases:

1. Inactive groups, GZ .

2. Active groups, GA.

Case 1: For inactive groups, we consider the subdifferential at zero. The subdifferential of a norm at zero is
given by the dual norm of the unit ball (Schneider and Tardivel, 2022),

∂Jgslope(0;w) = BJ∗
gslope(0;w)[0, 1] = {x : J∗

gslope(x;w) ≤ 1}.

The dual norm for gSLOPE is given by (Brzyski et al., 2019)

J∗
gslope(x;w) = J∗

slope([x]G,−0.5).

Hence, the dual norm unit ball is

BJ∗
gslope(0;w)[0, 1] = {x : [x]G,−0.5 ∈ BJ∗

slope(0;w)[0, 1]},

where BJ∗
slope(0;w)[0, 1] = {x ∈ Rm : cumsum(|x|↓ − w) ⪯ 0} is the unit ball of the dual norm to Jslope (Bogdan

et al., 2015). Using this, the subdifferential at zero for the inactive groups, Z, is given by

∂Jgslope(0;wZ) = {x ∈ Rcard(GZ) : [x]GZ ,−0.5 ∈ ∂Jslope(0;wZ)}.

Case 2: Without loss of generality, denote the group index s such that ∥β(g)∥2 = 0 for g > s (inactive groups)
and ∥β(g)∥2 ̸= 0 for g ≤ s (active groups). In other words, g ∈ GA if g ≤ s. Define a set D = {d ∈ Rp :
∥β(1) + d(1)∥2 > . . . > ∥β(s) + d(s)∥2, ∥β(s) + d(s)∥2 > ∥d(g)∥2, g > s}. By definition of a subdifferential, if
x ∈ ∂Jgslope(β;w), then for all d ∈ D

m∑
g=1

√
pgwg∥β(g) + d(g)∥2 ≥

m∑
g=1

√
pgwg∥β(g)∥2 + x⊤d.

Splitting this up into whether the groups are active (whether g ≤ s):

s∑
g=1

√
pgwg∥β(g) + d(g)∥2 +

m∑
g=s+1

√
pgwg∥d(g)∥2 ≥

s∑
g=1

√
pgwg∥β(g)∥2 (10)

+

s∑
g=1

x(g)T d(g) +

m∑
g=s+1

x(g)T d(g).
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Now, for g ∈ GA, define a new set Dg = {d ∈ D : d(j) ≡ 0, j ̸= g}. Taking d ∈ Dg, Equation 10 becomes

√
pgwg∥β(g) + d(g)∥2 ≥

√
pgwg∥β(g)∥2 + x(g)T d(g).

Since the set {d(g) : d ∈ Dg} is open in Rpg and contains zero, by Corollary G.1 in Brzyski et al. (2019), it follows
that x(g) ∈ ∂fg(b(g)) for fg : Rpg → R, fg(x) = wg

√
pg∥x∥2. Now, for g ≤ s, fg is differentiable in β(g), giving

x(g) = wg
√
pg

β(g)

∥β(g)∥2
,

proving the result.

Proof of Proposition 3.2. Suppose we have B ̸= ∅ after running the algorithm. Then, plugging in h(λk+1) =

([∇f(β̂(λk+1))]G,−0.5)↓ gives

cumsum
((

([∇f(β̂(λk+1))]G,−0.5)↓
)
B − λk+1wB

)
≺ 0,

so that by the gSLOPE subdifferential (Theorem 3.1) all groups in B are inactive. This is valid by the KKT

conditions (Equation 2), as we know that −∇f(β̂(λk+1)) ∈ ∂Jgslope(0;w). Hence, Sg(λk+1) will contain the
active set Ag(λk+1).

Proof of Proposition 3.3. Since cumsum(y) ⪰ cumsum(x) ⇐⇒ y ⪰ x (Larsson et al., 2020), we only need to
show for a group g,

|hg(λk+1)| ≤ |hg(λk)|+ λkwg − λk+1wg.

Applying the reverse triangle inequality to the Lipschitz assumption gives

|hg(λk+1)| − |hg(λk)| ≤ |hg(λk+1)− hg(λk)| ≤ λkwg − λk+1wg

=⇒ |hg(λk+1)| ≤ |hg(λk)|+ λkwg − λk+1wg,

proving the result.

A.4 KKT Checks

To check whether a group has been correctly discarded during the screening step, the KKT conditions for
gSLOPE are checked. They are given by

0 ∈ ∇f(β) + λ∂Jgslope(β;w)

=⇒ −∇f(β) ∈ λ∂Jgslope(β;w).

Hence, we are checking whether the gradient of the loss function sits within the set of the gradient of the penalty.
As we are only interested in identifying incorrectly discarded groups, we require only to check the subdifferential
condition at zero. Hence, a violation occurs if a group is discarded but

−∇f(β) /∈ λ∂Jgslope(0;wGZ )

=⇒ −∇f(β) /∈
{
x ∈ RcardGZ : [x]GZ ,−0.5 ∈ ∂Jslope(0;λwGZ )

}
=⇒ [∇f(β)]GZ ,−0.5 /∈ ∂Jslope(0;λwGZ )

=⇒ cumsum(([∇f(β)]GZ ,−0.5)↓ − λwGZ ) ≻ 0.

A.5 Path Start Proof

Proof of Proposition 3.4. The aim is to find the value of λ at which the first group enters the model. When all
features are zero, the gSLOPE KKT conditions (Equation 2) are

0 ∈ ∇f(0) + λ∂Jgslope(0;w).
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This is satisfied when

[∇f(0)]G,−0.5 ∈ ∂Jslope(0;λw) =⇒ cumsum
(
([∇f(0)]G,−0.5)↓ − λw

)
⪯ 0.

Rearranging this gives
λ ⪰ cumsum

(
([∇f(0)]G,−0.5)↓

)
⊘ cumsum(w).

Picking the maximum possible λ such that this holds yields

λ1 = max
{

cumsum
(
([∇f(0)]G,−0.5)↓

)
⊘ cumsum(w)

}
.

This can be verified by noting that λ1 = J∗
gslope(∇f(0);w) (Ndiaye et al., 2016b). Now, J∗

gslope(x;w) =
J∗
slope([x]G,−0.5;w) (Brzyski et al., 2019). The dual norm of SLOPE is given by (Negrinho and Martins, 2014)

J∗
slope(x;w) = max {cumsum(|x|↓)⊘ cumsum(w)} .

Therefore, λ1 is as before.

B SPARSE-GROUP SLOPE

B.1 Penalty Weights

The penalty weights for SGS provide variable and group FDR-control simultaneously, under orthogonal designs
(Feser and Evangelou, 2023). They are given by (where the indexing corresponds to the sorted variables/groups)

vmax
i = max

j=1,...,m

{
1

α
F−1
N

(
1− qvi

2p

)
− 1

3α
(1− α)ajwj

}
, i = 1, . . . , p,

wmax
i = max

j=1,...,m

{
F−1
FN(1− qgi

m )− α
∑

k∈Gj
vk

(1− α)pj

}
, i = 1, . . . ,m,

where Fχpj
is the cumulative distribution function of a χ distribution with pj degrees of freedom, FN is the

cumulative distribution function of a folded Gaussian distribution, and aj is a quantity that requires estimation.
The estimator âj = ⌊αpj⌋ is proposed in Feser and Evangelou (2023). As with gSLOPE (Appendix A.1), a
relaxtion is possible, giving the weights

vmean
i = F

−1

N

(
1− qvi

2p

)
, where FN (x) :=

1

m

m∑
j=1

FN

(
αx +

1

3
(1− α)ajwj

)
, (11)

wmean
i = F

−1

FN

(
1− qgi

p

)
, where FFN(x) :=

1

m

m∑
j=1

FFN

(1− α)pjx + α
∑
k∈Gj

vk

 . (12)

In the manuscript, as recommended by Feser and Evangelou (2023) under general settings, the SGS variable
mean (Equation 11) and gSLOPE group mean (Equation 9) weights are used for all SGS numerical simulations.
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Figure A2: The SGS weights, (v, w), shown for Figure 4 for p = 500,m = 100, qv = 0.05, qg = 0.05, α = 0.95.
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B.2 Derivation of Soft Thresholding Operator

Proof of Lemma 4.1. To determine the form of the quantity ∂Jslope(0; v), consider that for Equation 7 to be
satisfied, the term inside the [·] operator needs to be as small as possible. Now,

∂Jslope(0; v) = {y : cumsum(|y|) ⪯ cumsum(v)}.

Note that cumsum(y) ⪯ cumsum(x) ⇐⇒ y ⪯ x. We consider the cases:

1. ∇if(β) > λαvi: choose yi = −vi.
2. ∇if(β) < −λαvi: choose yi = vi.

3. ∇if(β) ∈ [−λαvi, λαvi]: choose yi = ∇if(β)/λαvi.

Hence, the term becomes
S(∇f(β), λαv) := sign(∇f(β))(|∇f(β)| − λαv)+,

which is the soft thresholding operator.

B.3 Theory

Proposition B.1 (Strong group screening rule for SGS). Let h̃(λ) := ([S(∇f(β), λαv)]G,−0.5)↓. Then taking

c = h̃(λk+1) and ϕ = (1 − α)λk+1w as inputs for Algorithm A1 returns a superset Sg(λk+1) of the active set
Ag(λk+1).

Proof of Proposition B.1. The proof is similar to that of Proposition 3.2. Suppose we have B ̸= ∅ after running
the algorithm. Then,

cumsum(h̃B(λk+1)− λk+1(1− α)wB) ≺ 0

=⇒ cumsum
((

[S(∇f(β), λk+1αv)]G,−0.5)↓
)
B − λk+1(1− α)wB

)
≺ 0,

so that by the SGS subdifferential (Equation 7) all groups in B are inactive. Hence, Sg(λk+1) will contain the
active set Ag(λk+1).

Proof of Proposition 4.2. The proof is identical to that of Proposition 3.3, replacing hg(·) with h̃g(·) and λk+1w
by λk+1(1− α)w.

Proposition B.2 (Strong variable screening rule for SGS). Let h̄(λ) = |(∇f(β̂(λ)))|↓. Then taking c = h̄(λk+1)
and ϕ = λk+1αv for only the variables contained in the groups in Ag(λk+1) in Algorithm A1 returns a superset
Sv(λk+1) of the active set Av(λk+1).

Proof. Suppose we have B ̸= ∅ after running the algorithm. Then, we have

cumsum(h̄B(λk+1)− λk+1αvB) ≺ 0 =⇒ cumsum
((
|∇f(β̂(λk+1))|↓

)
B − λk+1αvB

)
≺ 0,

so that by the SGS subdifferential for non-zero groups (Equation 8) all variables in B are inactive. Hence,
Sv(λk+1) will contain the active set Av(λk+1).

Proof for Proposition 4.3. The proof is identical to that of Proposition 3.3, replacing hg(·) with h̄g(·), λk+1v
with λk+1αv, and considering only variables in the groups contained in Ag(λk+1).

B.4 KKT Checks

For SGS, the KKT conditions are first checked at the group-level for inactive groups (Appendix B.4.1). Further
variable checks are performed for violating groups and variables in active groups (to check whether the variables
should also be active) (Appendix B.4.2). The violating variables from these secondary variable checks are added
back into Ev.
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B.4.1 Group Checks

A group violation occurs if the KKT conditions do not hold at the group-level (Equation 7). That is, a violation
occurs if a group is discarded but

cumsum
((

[∇f(β) + λα∂Jslope(0; v)]GZ ,−0.5

)
↓ − λ(1− α)wZ

)
≻ 0.

B.4.2 Variable Checks

For the set of variables in a violating group (from Appendix B.4.1), denoted GKg , a variable violation occurs if
Equation 8 does not hold. That is, if

∇GKg
f(β) /∈ λα∂Jslope(0; vGKg

) =⇒ cumsum(|∇GKg
f(β)| − λαvGKg

) ≻ 0.

B.4.3 Alternative KKT Checks

An alternative approach for SGS is to check the KKT conditions directly on the variables. The KKT conditions
(Equation 6) can be rewritten as

−∇f(β)− λ(1− α)∂Jgslope(β;w) ∈ λα∂Jslope(β; v).

A KKT violation occurs the zero subdifferential conditions are not satisfied

−∇f(β)− λ(1− α)∂Jgslope(β;w) /∈ λα∂Jslope(0; v)

=⇒ cumsum
(
|∇f(β) + λ(1− α)∂Jgslope(β;w)|↓ − λαv

)
≻ 0.

Now, the objective is to make the term inside the sorted absolute value operator as small as possible, given that
the subdifferential term is unknown. To do this, a similar derivation as in Section B.2 can be used to determine
that the term must be the soft thresholding operator, so that a violation occurs if

cumsum
(
|S(∇f(β), λ(1− α)τω)|↓ − λαv

)
≻ 0,

where τ and ω are expanded vectors of the group sizes (
√
pg) and penalty weights (wg) to p dimensions, so that

each variable within the same group is assigned the same value. However, as we have had to approximate the
unknown subdifferential term, this check is not exact. In practice, we found that this check was not stringent
enough (due to the approximation), leading to violations being missed.

B.5 Path Start Proof

Proof of Proposition 4.4. The aim is to find the value of λ at which the first variable enters the model. When
all features are zero, the SGS KKT conditions (Equation 6) are

−∇f(0) ∈ λ(1− α)∂Jgslope(0;w) + λα∂Jslope(0; v)

=⇒ − 1

λ
∇f(0)− (1− α)∂Jgslope(0;w) ∈ α∂Jslope(0; v)

=⇒ cumsum

(∣∣∣∣− 1

λ
∇f(0)− (1− α)∂Jgslope(0;w)

∣∣∣∣
↓
− αv

)
⪯ 0.

By the reverse triangle inequality and ordering of the group weights

1

λ
cumsum (|∇f(0)|↓) ⪯ cumsum((1− α)|∂Jgslope(0;w)| − αv)

=⇒ λ ⪰ cumsum(|∇f(0)|↓)⊘ cumsum((1− α)|∂Jgslope(0;w)| − αv).

Now, note that for x ∈ Jgslope(0;w), it holds

cumsum([x]G,−0.5 − w) ⪯ 0 =⇒ [x]G,−0.5 ⪯ w =⇒ ∥x(g)∥2 ≤
√
pgwg,∀g ∈ G.

This is satisfied at the upper limit at x = τω. Hence,

λ1 = max {cumsum(|∇f(0)|↓)⊘ cumsum((1− α)τω − αv)} .
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C SLOPE ALGORITHM

Algorithm A1 SLOPE subdifferential algorithm from Larsson et al. (2020)

Input: c ∈ Rp, ϕ ∈ Rp, where ϕ1 ≥ · · · ≥ ϕp ≥ 0
S,B ← ∅
for i = 1 to p do
B ← B ∪ {i}
if cumsum(cB − ϕB) ≥ 0 then
S ← S ∪ B
B ← ∅

end if
end for
Output: S

D SCREEENING RULE FRAMEWORK

D.1 Group SLOPE Algorithm

For the following is performed for k = 1, . . . , l − 1:

1. Set Eg = Sg(λk+1) ∪ Ag(λk), where Sg(λk+1) is obtained using Proposition 3.3.

2. Compute β̂(λk+1) by Equation 1 with the gSLOPE norm using only the groups in Eg. For any groups not

in Eg, β̂(λk+1) is set to zero.

3. Check the KKT conditions (Equation 2) for all groups at this solution.

4. If there are no violations, we are done and keep β̂(λk+1). Otherwise, add the violating groups into E and
return to Step 2.

D.2 SGS Algorithm

For the following is performed for k = 1, . . . , l − 1:

1. Group screen step: Calculate Sg(λk+1) using Proposition 4.2.

2. Variable screen step: Set Ev = Sv(λk+1) ∪ Av(λk), where Sv(λk+1) is obtained using Proposition 4.3 with
only the groups in Sg(λk+1).

3. Compute β̂(λk+1) by Equation 1 with the SGS norm using only the features in Ev. For features not in Ev,

β̂(λk+1) is set to zero.

4. Check the KKT conditions (Equation 6) for all features at this solution.

5. If there are no violations, we are done and keep β̂(λk+1), otherwise add in the violating variables into Eg
and return to Step 3.
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E GROUP-BASED OSCAR

This section provides supplementary materials for extending the proposed screening rules to group-based OSCAR
models.

E.1 Penalty Sequence

The gOSCAR and SGO weights are defined by (for a variable i ∈ [p] and group g ∈ [m]) (Figure A3)

vi = σ1 + σ2(p− i), wg = σ1 + σ3(m− g), σ3 = σ1/m. (13)
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Figure A3: The SGO weights, (v, w), for p = 500,m = 100, qv = 0.05, qg = 0.05, α = 0.95.

E.2 Results

Observations and conclusions made for the screening rules of gSLOPE and SGS are also found to be true for
gOSCAR and SGO (Figures A4 - A8).

Figure A4 illustrates the effectiveness of bi-selection of SGO, similar to the effectiveness observed for SGS. Figures
A5 and A6 showcase the efficiency of the screening rules on the proportion of the selected groups/variables. The
screening rules are found to be effective across different data characteristics, with the running time of the models
significantly decreasing (Figure A7). KKT violations for SGO are more common compared to gOSCAR (Figure
A8), due to the additional assumptions made at the second screening layer (as with SGS). Similar to Figure 7,
the shape of the increasing number of KKT violations mirrors the log-linear shape of the regularization path.
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F RESULTS

F.1 Computational Information

The simulated experiments were executed on a high-performance computing cluster (x86-64 Linux GNU) and
the real data analysis was conducted on a Apple Macbook Air (M1, 8GB). Code for all simulations is available
in the Supplementary Material. For all models, ATOS was used with the algorithmic parameters given in Table
A1.

Table A1: Hyperparameters used for running ATOS in the synthetic and real data studies.

Parameter Synthetic Data Real Data

Max iterations 5000 10000
Backtracking 0.7 0.7
Max backtracking iterations 100 100
Convergence tolerance 10−5 10−5

Convergence criteria ∥x− z∥2 ∥x− z∥2
Standardization ℓ2 ℓ2
Intercept Yes for linear Yes for linear
Warm starts Yes Yes

F.2 Solution Optimality

This section presents the accuracy of the models with and without screening, by comparing the ℓ2 distances
observed between the screened and non-screened fitted values.

Synthetic Data For the linear model, the maximum ℓ2 distances observed between the screened and non-
screened fitted values were of order 10−6 for gSLOPE and 10−9 for SGS (Table A3). Across the different cases,
98000 models were fit in total for each approach (excluding the models for λ1, where no screening is applied).
Of these model fits, there were no instances for gSLOPE where E was not a superset of A. There was only one
instance (out of the 98000) that this occurred for SGS, where E was missing a single variable contained in A
(which had a non-screen fitted value of β̂ = −0.004).

For the logistic model, the maximum ℓ2 distances observed between the screened and non-screened fitted values
were of order 10−8 for gSLOPE and 10−9 for SGS (Table A7). Across the different cases, 98000 models were
fit in total for each approach (excluding the models for λ1, where no screening is applied). Of these model fits,
there were no instances for gSLOPE or SGS where E was not a superset of A.

Real Data In the real data analysis, the estimated coefficients with and without screening were very close to
each other for both SGS and gSLOPE (Table A10). However, direct comparison is less meaningful here, as the
models often failed to converge without screening, therefore not reaching the optimal solution.

F.3 Additional Results from the Simulation Study
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F.3.1 Additional Results for the Linear Model

0.00.20.40.60.81.0

λ/λmax

1.5

2.0

2.5

M
et

ri
c

Eg/Ag Ev/AvgSLOPE SGS

Figure A9: The proportion of groups/variables in E ,A, relative to the full input, for gSLOPE and SGS, as a
function of the regularization path for the linear model with p = 2750, ρ = 0.6,m = 197. The results are averaged
over 100 repetitions.
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Figure A10: The number of groups/variables in E ,A as a function of the regularization path for the linear model
with SGS and gSLOPE, shown for different values of the correlation (ρ) and p. The results are averaged over
100 repetitions, with 95% confidence intervals shown.
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F.3.2 Additional Results for the Logistic Model

This section presents additional results for the logistic model. Similar trends to the ones observed for the linear
model are seen.
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Figure A11: The number of groups/variables in E ,A as a function of the regularization path for the logistic model
with p = 2750, ρ = 0.6,m = 197, shown for gSLOPE and SGS. The results are averaged over 100 repetitions,
with 95% confidence intervals shown. This figure is the equivalent of Figure 2 for the logistic model.
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(b) p = 500, ρ = 0.9
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(c) p = 5000, ρ = 0
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Figure A12: The number of groups/variables in E ,A as a function of the regularization path for the logistic
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F.4 Data Description

• carbotax: Carbotax study of ovarian tumor growth.

– Response (continuous): Relative tumor volume (log2 scale).

– Data matrix: Gene expression measurements. 10000 factors were randomly sampled from a collection
of 34964.

– Grouping structure: Variables are grouped using k-means clustering (Lloyd, 1982).

• scheetz: Gene expression data in the mammalian eye.

– Response (continuous): Gene expression measurements for the Trim32 gene.

– Data matrix: Gene expression measurements for other genes.

– Grouping structure: Variables are grouped using k-means clustering (Lloyd, 1982).

• adenoma: Transcriptome profile data to identify formation of colorectal adenomas.

– Response (binary): Binary labels for whether sample came from adenoma or normal mucosa.

– Data matrix: Transcriptome profile measurements.

– Grouping structure: Genes are assigned to pathways (groups) using the C3 regulatory target gene sets.1

• cancer: Breast cancer patients treated with tamoxifen for 5 years.

– Response (binary): Binary labels classifying whether the cancer had recurred.

– Data matrix: Gene expression data.

– Grouping structure: Genes are assigned to pathways (groups) using the C3 regulatory target gene sets.1

• celiac: Gene expression data of primary leucocytes to classify celiac disease.

– Response (binary): Binary labels as to whether a patient has celiac disease.

– Data matrix: Gene expression measurements from the primary leucocytes.

– Grouping structure: Genes are assigned to pathways (groups) using the C3 regulatory target gene sets.1

• colitis: Blood cells data for classifying whether a patient has colitis.

– Response (binary): Binary labels classifying whether a patient has colitis.

– Data matrix: Gene expression measurements.

– Grouping structure: Genes are assigned to pathways (groups) using the C3 regulatory target gene sets.1

• tumour: Gene expression data of pancreative cancer samples to identify tumorous tissue.

– Response (binary): Binary labels indicating if a sample is from tumour tissue.

– Data matrix: Gene expression measurements.

– Grouping structure: Genes are assigned to pathways (groups) using the C3 regulatory target gene sets.1

Table A8: Dataset information for the six datasets used in the real data analysis.

Dataset p n m Group sizes Type Source

carbotax 10000 101 100 [1, 126] Linear Koussounadis et al. (2014)2

scheetz 18975 120 379 [1, 165] Linear Scheetz et al. (2006)2

adenoma 17661 64 1849 [1, 646] Logistic Sabates-Bellver et al. (2007)3

cancer 7057 60 1277 [1, 292] Logistic Ma et al. (2004)3

celiac 14294 132 1666 [1, 570] Logistic Heap et al. (2009)3

colitis 11999 127 1528 [1, 497] Logistic Burczynski et al. (2006)3

tumour 17661 52 1849 [1, 646] Logistic Pei et al. (2009); Ellsworth et al. (2013); Li et al. (2016)3

1gsea-msigdb.org/gsea/msigdb/human/collections.jsp. Accessed 08/2024.
2downloaded from https://iowabiostat.github.io/data-sets/. Accessed 08/2024.
3downloaded from https://www.ncbi.nlm.nih.gov/. Accessed 09/2024.

gsea-msigdb.org/gsea/msigdb/human/collections.jsp
https://iowabiostat.github.io/data-sets/
https://www.ncbi.nlm.nih.gov/
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F.5 Additional Results from the Real Data Analysis
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Figure A14: The ratio of no screen time to screen time (↑) of SLOPE, gSLOPE, and SGS applied to the real
datasets, for fitting 100 path models, split into response type. The horizontal grey line represents no screening
improvement.
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Figure A15: The ratio of the fitting set (Ev) to the input dimensionality (p) (↓) of SLOPE, gSLOPE, and SGS
applied to the real datasets, for fitting 100 path models, split into response type.

carbotax scheetz adenoma cancer celiac colitis tumour
100

101

102

E v
/A

v
(l

og
1
0
)

Linear Logistic

gSLOPE SGS SLOPE

Figure A16: The ratio of the fitting set (Ev) to the active set (Av) (↓) of SLOPE, gSLOPE, and SGS applied to
the real datasets, for fitting 100 path models, split into response type.
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SGS, plotted along the regularization path for the carbotax, scheetz, adenoma, colitis, and tumour datasets.
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