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Abstract

The sparse-group lasso performs both variable and group selection, making simul-
taneous use of the strengths of the lasso and group lasso. It has found widespread
use in genetics, a field that regularly involves the analysis of high-dimensional data,
due to its sparse-group penalty, which allows it to utilize grouping information.
However, the sparse-group lasso can be computationally more expensive than both
the lasso and group lasso, due to the added shrinkage complexity, and its additional
hyper-parameter that needs tuning. In this paper a novel dual feature reduction
method, Dual Feature Reduction (DFR), is presented that uses strong screening
rules for the sparse-group lasso and the adaptive sparse-group lasso to reduce
their input space before optimization. DFR applies two layers of screening and is
based on the dual norms of the sparse-group lasso and adaptive sparse-group lasso.
Through synthetic and real numerical studies, it is shown that the proposed feature
reduction approach is able to drastically reduce the computational cost in many
different scenarios.

1 Introduction

High-dimensional datasets, where the number of features (p) is far greater than the number of
observations (n) in a data matrix X € R™*P are becoming increasingly common with the increased
rate of data collection. Applying traditional regression approaches to high-dimensional data is
troublesome; the ordinary least squares solution does not have a solution if p > n, as it requires
evaluation of (XTX)_l, which is singular in this case [16]. To alleviate this, models such as ridge
[L8], the lasso [44]], elastic-net [56], and SLOPE [3] have been proposed and found increased use in
the machine learning community [[1} 24} 29, 143]. These models fall under the umbrella of shrinkage
methods, as the estimated coefficients are shrunk towards zero during optimization, overcoming the
singularity issue of the data matrix. Of the many shrinkage methods, the lasso has found the most
widespread use, due to its ability to shrink coefficients exactly to zero, performing variable selection.

Variable selection allows a researcher to determine which features have an association with the
response y € R™. This is particularly useful in genetics, where a biological researcher may wish
to discover a candidate list of genes with an association to a disease outcome. These genes can
then be examined in more detail through biological experiments. However, genes are naturally
found in pathways (groups of genes) and any regression approach that does not use this grouping
information would not be making full use of the information available. Attempts to incorporate
grouping information, leading to group selection, can be found through methods such as the group
lasso [53]], group SLOPE [5]], and group SCAD [[15)]. However, applying only group shrinkage can
lead to issues with convergence and poor predictive performance, as the model is forced to keep
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all variables within an active group, leading to many noisy variables being part of the optimization
process [[13}142].

The limitations of group-based regression models led to the development of sparse-group shrinkage
models, such as the sparse-group lasso (SGL) [42]] and sparse-group SLOPE (SGS) [13]], which apply
shrinkage on both variables and groups to yield concurrent variable and group selection. In particular,
SGL has found increased popularity in applications in the machine learning [46,52] and healthcare
[[12} 35, 42]] communities, due to its ability to shrink whole groups of variables to zero, as well as
variables within active groups.

To formally define SGL, suppose the variables sit within a grouping structure, where Gy, ..., G,
denote the disjoint sets of variable indices for the groups, of sizes p1, ..., py. Then, SGL is a convex
combination of the lasso and group lasso, given by [42]
Bia(A) = arg min{f(8) + AlBlser}, M
BeERP
where f is the loss function, A > 0 defines the level of shrinkage, and for a € [0, 1]
1Bllser = 1l + (1= @) Y /BgllB]2. 0

g=1

where 3(9) € RPs is the vector of coefficients in group g. SGL has been extended to have adaptive
shrinkage through the adaptive sparse-group lasso (aSGL) [28]].

1.1 Feature reduction approaches for the sparse-group lasso

The benefits of SGL often come at the cost of increased computational cost. SGL requires the tuning
of two hyper-parameters: A, which sets the amount of shrinkage, and «, which determines the balance
between the ¢; and {2 penalties. Typically, « is set subjectively (Simon et al. [42] suggest o = 0.95)
and A is tuned along a path of values A\; > ... > )\; > 0, which generates a pathwise solution of
I models. Algorithms such as the Least Angle Regression (LARS) algorithm are able to calculate
solutions for all possible values of A, but are very sensitive to multicolinearity and scale quadratically,
rendering their use in high-dimensional settings limited [8]].

Practically, A tends to be tuned along a path using cross-validation, magnifying the computational
burden of sparse-group models. Feature reduction techniques (also called screening rules) discard
features before the optimization process that would have been inactive at the optimal solution. Whilst
methods exist to discard observations [41} 55]], the focus of this manuscript is high-dimensional
settings, in which discarding features is more impactful on computational savings.

There are two types of feature reduction techniques: exact and heuristic. Exact techniques are
guaranteed to only discard inactive features, but tend to be more conservative. On the other hand,
heuristic methods often discard more features, but can make mistakes [45]]. These mistakes are
protected against by checking the Karush—Kuhn-Tucker (KKT) optimality conditions and adding any
offending features back into the optimization [21]].

Most feature reduction techniques are model-specific, as they tend to make use of the KKT conditions.
Exact methods were initially introduced for the lasso by the Safe Feature Elimination (SAFE) method
[9, which was further extended to the group lasso [4] and sparse-group lasso [31]]. Other exact
examples include the dome test [51]], Dual Polytope Projections (DPP) [48]], and Slores [49]. The
strong rule by Tibshirani et al. [45] provides a framework for applying heuristic feature reduction
to penalized models with single separable norms, which has been extended to single non-separable
norms in Larsson et al. [23] and sparse-group non-separable norms in Feser and Evangelou [14].
Other heuristic techniques include Sure Independence Screening (SIS) [11] and the Hessian rule [22].

Aside from the exact and heuristic categories, feature reduction techniques tend to follow three forms;
static, where the feature reduction occurs only once (at the start of the optimization) [9} 150, 511,
dynamic, where the reduction occurs iteratively [4]], and sequential, where information from the
previous solution is used [22} 23] 145]].

An exact feature reduction method for SGL was proposed by Ndiaye et al. [31], called the GAP safe
rules. The method combines sequential and dynamic feature reduction, and creates feasible regions in
which active variables sit using the duality gap. GAP safe applies two layers of reduction, discarding



inactive groups and inactive variables within active groups. Other SGL exact methods are Two-layer
Feature Reduction (TLFre) [47], although this was in fact shown not to be exact [30]. A heuristic
approach for SGL was introduced by Liang et al. [27], called sparsegl, which is a strong rule that
applies only group-level reduction. There have been other attempts to speed up SGL; Ida et al. [19]
calculate approximate bounds for the inactive conditions derived in Simon et al. [42], and Li et al.
[26] derive a heuristic screening rule, but it is limited to multi-response Cox models.

1.2 Contributions

In this manuscript, we propose a new dual feature reduction method for SGL and adaptive SGL: Dual
Feature Reduction (DFR), which is based on the strong rule [45] and the bi-level framework for SGS
[14]. DFR is a strong (heuristic) sequential screening rule which applies two layers of screening; it
discards inactive groups and then discards inactive variables within any remaining active groups. By
reducing the input dimensionality before optimization, expanded tuning regimes can be performed,
including concurrent tuning of A and «, thus overcoming the limitation of choosing « subjectively.

DEFR is described for SGL in Section[2.3]and then expanded to adaptive SGL in Section [2.5] The
proofs of the propositions presented in these sections are provided in Appendix for SGL and
Appendix [B.2] for aSGL.

2 Theory

2.1 Problem statement

SGL is fitted along a path of shrinkage parameters A; > ... > A; > 0. The objective is to use the
solution at Ay, to generate a set of candidate variables C,(A+1) C {1,...,p}, thatis a superset of the
(unknown) set of active variables at Ai41, given by A, (Ag41) := {3 € {1,...,p} : Bi(Ak+1) # O}
The optimization at Ax41 (Equation is then calculated using only C, (Ag41). If the candidate set is
a small proportion of the total input space, then large computational savings are expected.

To generate the candidate variable set, we first generate a candidate group set (Section[2.3.1)), which
is then used as a basis for constructing the final candidate variable set (Section[2.3.2)). This is done
using the dual norm of SGL.

2.2 Dual norm

DFR requires evaluating the dual norm of SGL, defined as || 2|3y = sup{z"x : ||z|[sg < 1}. The

SGL norm can be expressed in terms of the dual of the e-norm, as in Ndiaye et al. [31]],

m

1Bl =Y (@ + (L= ) yB)IBD L, =Y 7llBI7,, where 74 = a+ (1 —a)y/By. (3)

g:l g:l
The e-norm, ||z||¢,, is defined as the unique nonnegative solution ¢ of the equation [6]

Pg

D (2l = (1= eg)a)} = (egq)®, where ¢, =
i=1

Tg — &

Tg
Using this, by Ndiaye et al. [31], the dual norm of SGL applied to a group g can be formulated as

1€ g = max 7€), @)

,,,,,

2.3 Dual feature reduction

The DFR method for SGL and aSGL is defined by the following screening reduction rules:
SGL { Group reduction: Hng(BE/\k))Heg < 75(2A k41 — k) :>A BODNey1) =0,  (5)
Variable reduction: |V, f(B8(Ax))] < a(2Ap+1 — Ak) = Bi(Ak+1) = 0. (6)
SGL {Group reduction: Hng(B()\k))Hezg <Y1 — M) = BDNey1) =0, (D)
Variable reduction: |V, f(B(Ag))] < av;(2Ag41 — M) = Bi(Ak41) =0, 8)



with €, and 7, defined in Section Under a = {0, 1}, the rules reduce to those of the (adaptive)
group lasso and (adaptive) lasso respectively (Appendix [A.4).

2.3.1 Group reduction

To generate a candidate group set, the KKT stationarity conditions [21]] are used, providing conditions
for an inactive group. For SGL, they are given by, for a group g at A1 (using Equations|[I]and 3]

0 € Vyf(B(Akt1)) + 7o Mt1Og k11, &)

where Oy ;41 = BHB(AkH)H:g is the subgradient of the dual norm of the e-norm at A;41. The

subgradient for an inactive group g (at zero) can be expressed by the unit ball of the dual norm:
@27k+1 = 9|[0fz, = {x € RPs : ||z||, < 1} [40]. Plugging the unit ball into Equation |§I and
applying the e-norm, the subgradient can be canceled out, so the KKT conditions can be written as

5 Il -
Vo (BA41)) € TAe4107 k11 = [V f (BOk+1)) e, = ToAes1]|Og ey lle, < Tgkmd-o)
If the gradient were available, it would be possible to identify the active groups at A1 exactly, using
Equation[T0} However, as this is not possible in practice, an approximation M, is required such that

Vg f(BAk1)lle, < My, (11

Then, the screening rule tests whether M, < 7,A;41. If this is found to be true, it can be concluded
that Equation [I0] holds and so the group must be inactive. An approximation can be found by
assuming that the gradient is a Lipschitz function of A\ with respect to the e-norm,

IV £ (B11)) = Vo  (BORD e, < 7l Arr = Axl, (12)
which is a similar assumption to the lasso strong rule [45]]. Using the reverse triangle inequality gives
IV (B le, S IV fBOR)lle, + 7oAk = Mia) =2 My, (13)

and a suitable approximation M. Therefore, the strong group screening rule for SGL can be
formulated by plugging the approximation from Equation [I3]into Equation [T} discard a group g if

IV B le, + ToMk = Aes1) < Tghisr == Vo f (B le, < Tg(2Xk1 — Ai).

Since the Lipschitz assumption can fail, KKT checks (Section [2.3.3)) are performed to prevent
violations. Propositions [2.1]and [2.2] formalize the theoretical and practical (DFR) group rules. The
theoretical rule relies on knowledge of the gradient at k£ + 1, which is not available.

Proposition 2.1 (Theoretical SGL group screening). For any A\gy1,k € {1,...,1—1}, the candidate
setCg(Apg1) ={g € {1,...,m} : [[Vgf(B(Aes1))lle, > TgAks1} recovers the exact support of the
active groups for SGL. That is, Cy(Agy1) = Ag(M\p1) = {i € {1,...,m} : |89 (M\ps1)|l2 # O}

Proposition 2.2 (DFR-SGL group screening). For any Ag+1,k € {1,...,1 — 1}, assuming that
IV f(BAkt1)) = Vo (BOW) e, < ol Mg — Axl,

the candidate set Cg(Ap1+1) = {g € {1,...,m}: ||ng(3()\k))||6_(7 > T4(2Ak41— Ak)} is a superset

of the set of active groups for SGL. That is, Ag(Ai+1) C Cg(Aky1).

2.3.2 Variable reduction

Group screening reduces the input dimensionality, but further reduction is possible by applying
a second screening layer to the variables in the candidate groups. For an inactive variable, i ¢
Ay (Ag+1),1 € G, the KKT conditions are (using the SGL decomposition in Equation

0 € Vif(Bks1)) + Aer10® g + Apgr (1 — )W), (14)

where ® and W are the subgradients of the /; and {5 norms respectively. For an active group, the
subgradient of the /5 norm is given by Bi(g ) /|189)]|2, which vanishes for an inactive variable. So,

~Vif(BOs1)) € Mey100 sy B (Vi F(BOws1))| < Apae, (15)



where ®0, ., = {z € R : [z| < 1}. This is similar to the strong screening rule for the lasso [43],
scaled by . Therefore, using the Lipschitz assumption

IVif(B(As1)) = Vif (BOW))] < @Ak — Aksr),s

yields the strong variable screening rule for SGL: discard a variable j in an active group g if

IVif(BOW))] < a(2Xeg1 — Ak).- (16)

To derive Equation knowledge of A,(A,11) is required, which is not possible in practice.
However, by Proposition it is contained within the candidate set C4(Ax+1), and so this is used
instead as an approximation. That is, the variable screening rule (Equation[6) is applied to the groups
in the candidate set. The approximation is not a concern, as the KKT checks (Section [2.3.3)), which
are performed for any strong screening rule, will negate any errors in the approximation.

The theoretical and practical (DFR) variable rules are formalized in Propositions [2.3]and 2.4]

Proposition 2.3 (Theoretical SGL variable screening). For any Ag+1,k € {1,...,1 — 1}, the

candidate set C,(Ap11) = {i € Gy for g € Ag(Ap41) : |Vif(B(Ak41))| > Apg1a} recovers the
exact support of the active variables for SGL. That is, C,(Ag+1) = Ap(Apx1).

Proposition 2.4 (DFR-SGL variable screening). For any A\iy1,k € {1,...,1 — 1}, assuming that

IVif(B(Aks1)) = Vif (BOW))] < a(Ak — A1),

the candidate set C,,(Ap11) = {i € Gg for g € Ag(Miy1) = [Vif(B(AR))| > a(2Ae41 — i)} isa
superset of the set of active variables for SGL. That is, A, (Ag+1) C Cop(Akt1)-

2.3.3 Karush—-Kuhn-Tucker (KKT) checks

The screening rules of DFR use several Lipschitz assumptions (Propositions [2.2]and [2.4), as well as
approximating the group active set by the group candidate set for the variable screening step (Section
[2.3.2). When these assumptions fail, the screening rules can make mistakes and incorrectly exclude
active variables. To protect against this, the KKT conditions are checked for each variable after
screening. A KKT violation occurs for variable ¢ € G, if the following equation does not hold:

1S(Vi f(Bkt1))s A1 (1 = @) /By)| < Air1cr, (17)

where S(a,b) = sign(a)(|a] — b)+ is the soft-thresholding operator (see Appendix for the
derivation). A violating variable is added back into the optimization procedure (see Section [2.4).

2.4 Algorithm

The DFR algorithm is based on the sparse-group screening framework, proposed by Feser and
Evangelou [14], and is shown in Algorithm[I] DFR applies a layer of group screening, followed by
variable screening on any remaining groups, to form the candidate variable set C,,. This is combined
with the previously active variables to form the optimization set, O,,, which is the input space to
fit SGL on. Any variables outside the optimization set are set to zero. The KKT checks are then
performed (Section [2.3.3)), with any violation variables added to the optimization set. This is repeated
until no violations occur.



Algorithm 1 Dual Feature Reduction (DFR) for SGL

Input: A € R, X € R™*P y € R" o € [0, 1]
compute 3(\1) using Equation
fork=1tol—1do
Cy(Ar+1) < candidate groups from Equation 5]
Cy(Ak41) < candidate variables from Equation|f]for i € Gy, g € Cg(Ax41), and i & A, (Ag)
Oy + Cyp(Ap+1) U Ay (Ag) » Optimization set
compute Bi(}\k.}rl),i € O,, using Equation
KC,, + variable KKT violations for i ¢ O,, using Equation » KKT check
while card(KC,) > 0 do
0, « O, UK, » Optimization set
compute 3;(Apy1),% € Oy, using Equation
IC,, + variable KKT violations for i ¢ O, using Equation[17] » KKT check
end while
end for A
Olltpllt: Bsgl()\l), Ce aﬂsgl()\l) S Rpx!

2.5 Adaptive sparse-group lasso

The Adaptive Sparse-group Lasso (aSGL) applies adaptive shrinkage in a sparse-group setting,
achieving the oracle property in a double-asymptotic framework, and has the norm [28} 136]

p m

1Bllser = @ il Bil + (1= ) Y wy /Byl B2, (18)
i=1 g=1

where v; and w, are adaptive weights. It has a less straightforward, but nonetheless useful, connection

to the e-norm, which allows for screening rules to be derived. The aSGL norm can be rewritten as

(with the derivation given in Appendix [B.T)

[[Blasgt = Z'Yg||5(g)H:/g> where (19)
g=1
« _
’Yg :Oé”U(g)Hl — M Z ’U7|BZ|+(1—OZ)’U)(]\/ZTQ7 6;} :,yg 1(1_a)wgw/pg~
1,J€Gg,i#]

Using similar calculations as for SGL, the strong screening rules and KKT checks for aSGL are given
by Equations[7]and [§](see Appendix [B.2]for details and formal results). Algorithm|[T]is also applicable
for aSGL, using the corresponding aSGL equations as replacement (Algorithm [Al]in Appendix [B.4).
The choice of adaptive weights is described in Appendix [B.3]

3 Numerical results

In this section, the efficiency and robustness of DFR is evaluated through the analysis of both synthetic
and real data that capture different data characteristics. As the purpose of screening rules is to reduce
the dimensions of the input space and subsequently to reduce the computational cost, the following
two metrics have been used in the comparisons:

» Improvement factor = no screen time / screen time, which defines by how many orders the
screening has improved the computational fitting time. For example, a value of two indicates
it is twice as fast when using screening.

* Input proportion = O,,/p, which defines how much of the total input space was used in the
optimization. For example, a value of 0.5 indicates half the input space was used.

DFR is compared with the existing SGL screening rules sparsegl [27] and GAP safe [31]. sparsegl,
in contrast to DFR, only performs a single layer of group screening. This rule is also based on the
framework of Tibshirani et al. [45]], but uses a different Lipschitz assumption, which applies only the
{5 group penalty, rather than the full SGL norm (as is the case for DFR). On the other hand, GAP safe
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is an exact feature reduction method for SGL that can be implemented dynamically or sequentially
under linear regression [31]]. Appendix [C]provides detailed descriptions of these two rules.

Throughout the analyses, the SGL optimization is performed using the Adaptive Three Operator
Splitting (ATOS) [133]] algorithm, although DFR can be used with any fitting algorithm.

3.1 Analysis of synthetic data

The data in this section is generated using a linear model, y = X3 + ¢, where X ~ N(0,X) €
[R200x1000 the signal is sampled from 3 ~ A(0, 4), and the noise is ¢ ~ N'(0, 1). For X, correlation
was applied inside each group, such that ¥; ; = p = 0.3, when 7 and j are in the same group. The
variables were placed in = 22 uneven groups of sizes in [3, 100], with a 0.2 active group proportion
and a 0.2 active variable proportion for variables within an active group. The models were fit along a
50-length path, starting at \; (as defined by Appendix[A.3|for SGL and Appendix [B.2.1|for aSGL),
and terminating at 0.1\;. Each simulation case was repeated 100 times, and the presented results are
averaged across these 100 repeats, unless otherwise stated. Detailed simulation set up information
can be found in Appendix[D.2]

Comparison to GAP safe. Comparing DFR to the GAP safe rules, it is evident that the improvement
factor is significantly superior for DFR compared to both the dynamic and sequential GAP rules
(Figure[T). In fact, although the input proportion of DFR and GAP safe are of similar levels (Figure
[A2)), the cost of calculating safe regions appears to nullify any gain in dimensionality reduction. This
comparison shows that the two reduction approaches (heuristic vs exact) arrive at very similar results
(the screened sets), but DFR achieves this with significantly greater computational efficiency.

Increasing dimensionality. The benefits of variable screening are mostly observed in the settings of
large p (Figure[T). This is further illustrated in the analysis of interaction terms (Table[I|and Appendix
[D.4), where within each group all possible interactions of order 2 and 3 were generated. DFR is able
to improve the large computational savings when fitting interactions, especially compared to sparsegl,
which under order 3 interactions provides only a marginal benefit (Table[T). These savings make it
more feasible for sparse-group models to be used in interaction detection problems. Such challenges
are frequently seen in the field of genetics, where gene-gene and gene-environment relationships are
useful discoveries [[7, 54]. Both Figure[T|and Table[I]illustrate the benefits of using bi-level screening
compared to only group screening that sparsegl performs.

Robustness. A clear benefit of DFR over sparsegl is observed under very sparse signals (Figure
2). It is clear that screening rules have an increasing impact as the signal becomes sparser. However,
when the signal saturates, screening approaches perform similarly, as their effectiveness is reduced.
DFR is further found to be relatively unaffected by the strength of the signal and provides a benefit
regardless of the strength (Figure[2). Finally, under different amounts of group correlation in X, DFR
is more effective at reducing the input space when compared to sparsegl, especially under minor



correlation (Figure[3). Under higher correlation, the models become less sparse, again resulting in
reduced screening importance.

Across different values of ., DFR is able to effectively reduce the input space (Figure[3)), with the
screening efficiency a linearly decreasing function. Under values of « close to zero, SGL is forced to
pick more variables within a group as active, so the input space can not be as effectively reduced. In
such scenarios, the second layer of screening is not as important, shown by the similar performances
of DFR and sparsegl. Approaching the commonly used value of o = 0.95 shows the clear benefits of
DFR. DFR-aSGL is also found to be robust under different values of ; and ~, (Figure[AG).

DEFR is further shown to be effective for logistic models (Appendix [D.6)). The efficiency of DFR has
the potential to enable approaches, like cross-validation, to be applied for the fine-tuning of all SGL
and aSGL hyper-parameters, which is not often done in practice (Appendix [D.7).

KKT violations. KKT violations for DFR are very rare. Across all experiments, DFR-SGL had
only a single KKT violation (Table[AT3). Violations were more common for DFR-aSGL and sparsegl,
but were still rare. In the experiment in which DFR-SGL had its only violation (Figure 3] (right)),
DFR-aSGL had a violation every 1739 fits, and sparsegl had one every 53900 fits. Note that sparsegl
violations refer to group violations, and DFR-aSGL to variable ones, making it more likely to have
a variable violation. In some instances, sparsegl demonstrates more efficient group-level screening
(Table[ATT)), while on other occasions DFR-SGL is more efficient (Table[AT4). However, the elevated
number of KKT violations for sparsegl suggests that the Lipschitz assumption of DFR is more robust.

4 Real data analysis

The efficiency of DFR is further evaluated through the analysis of six real datasets with different
characteristics, including response type and input dimensionality. Three of the datasets, brcal,
scheetz, and trust-experts, have continuous responses, so are fit using an SGL linear model. The
former two were also analyzed with regards to screening rules in Larsson and Wallin [22]], and
the later in Liang et al. [27]. The other three datasets, adenoma, celiac, and tumour, have binary
responses, so an SGL logistic model is used. The trust-experts dataset is low-dimensional, and the
other five are high-dimensional. The models were fit along a 100-length path, terminating at 0.2,
where \; generates the null model. More information on the datasets is provided in Appendix

For all datasets considered, DFR outperforms sparsegl for reducing computational cost (Figure f)
and is able to keep the input proportion low, even as the model saturates (Figure[3). As sparsegl only
screens groups, when a group enters the optimization set, sparsegl is forced to fit with the full group.

Even in the case of low-dimensional data (trust-experts), DFR provides a clear benefit. DFR-aSGL
performs very well for trust-experts and celiac, improving the computational cost by over 1000 times.
Part of the increased efficiency over DFR-SGL in these cases is that the active sets for aSGL models
tend to be smaller (Table[A39), due to the increased penalization that comes with the adaptivity, which
leads to the optimization set being a smaller proportion of the input space. However, despite the
advantages of screening in an adaptive penalization framework, we do still observe that DFR-aSGL
is more efficient at reducing the optimization set, with respect to the active set (Table[A39).
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Figure 2: The improvement factor for the screening methods applied to synthetic data, as a function
of the data sparsity proportion (left) and signal strength (right), with 95% confidence intervals.
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Figure 5: The input proportion as a function of the shrinkage path for the screening methods applied
to the celiac and brcal datasets, using logistic models.

DFR is observed with aiding in mitigating convergence issues (Table[A40). Across all datasets, DFR
encountered no failed convergences. In contrast, sparsegl did not converge at several path points for
both adenoma and scheetz. Applying no screening led to SGL not converging for adenoma, scheetz,
and tumour. By drastically reducing the input space, convergence issues arising from large datasets
are resolved, which not only improves computational cost, but also solution optimality.

5 Discussion

A new feature reduction approach for the sparse-group lasso and adaptive sparse-group lasso has
been introduced, called Dual Feature Reduction. DFR applies two layers of reduction, using strong
screening rules, to efficiently reduce the input dimensionality for optimization. The rules are
derived using the dual norm of SGL. DFR first applies group-level screening, discarding inactive
groups, followed by variable-level reduction, where inactive variables in active groups are removed.



By discarding variables that would have been inactive at the optimal solution, DFR is able to
achieve significant computational savings, allowing the SGL family of models to be more efficiently
implemented and applied to larger and more complex datasets. This gain comes at no cost, as the
optimal solution is still achieved (Appendices [D.3] and [E.2). In fact, by reducing the input
dimensionality, instances were observed where DFR helped SGL overcome convergence issues that
would have occurred otherwise.

DFR proved robust across different data and model parameters, achieving drastic feature reduction
under all scenarios considered. This consistently translated into large computational savings across
both real and synthetic data. DFR also outperformed the group-level strong rule for SGL, sparsegl,
under all considered situations, showing the benefit of applying two layers of screening.

Limitations. Several assumptions were required to perform two layers of feature reduction for SGL
and aSGL. These assumptions were only broken once for SGL across all our simulations and only
very infrequently for aSGL. However, it is possible that there are scenarios that we did not consider
where the assumptions break down. This is a limitation of any strong screening rule, although DFR in
particular carries additional assumptions over other strong rules, due to the second layer of screening.
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A Sparse-group lasso

A.1 Theory
A.1.1 Group reduction

Proof of Proposition[2.1] To prove the two sets are equivalent, we need to prove that for any g €
{1,...,m}and k € {1,...,1 — 1}, g € Ay(A+1) < ¢ € Cy(Ap41). We instead prove the
contrapositive: g ¢ Cg(Ap+1) <= g ¢ Ag(Ak41). So,

g & Co(Met1) = [IVaf(BMkg1))lle, < TgMrtt, by definition of the candidate set
= Vo f(B(Me+1)) € TeAi100 411, asO) g = {z € RP7 : ||zl < 1}
< 0€ V,f(B(Ae+1)) + Tg)‘kﬂ@g,kﬂ
= g ¢ Ag(Mipt1), by the KKT conditions (Equation [J).
O

Proof of Proposition[2.2] To prove the candidate set is a superset of the active set, we need to prove
that forany g € {1,...,m}and k € {1,...,1 — 1}, g € Ag(Ag41) = g € Cy(Ak+1). We
instead prove the contrapositive: g ¢ Cy(Ary1) = g ¢ Ag(Ar41). First, we rewrite the Lipschitz
assumption as (using the reverse triangle inequality)

IV fFBXr)lle, = IV f BN e, < Vg (BNir1)) = Vo f B le, < TolAbr1 — Al
= [V f (BOks1))le, < IV F B e, + TolAksr — Arl. (20)

Now, as g ¢ Cg(Ak1)s )
IVaf (B ey < 7g(2Ak41 = M)
Plugging this into Equation [20] yields

||vgf(6(/\k+1))||eg < Tg(2)‘k+1 - &) + Tg|)‘k+1 = Al

= [V f(BAk+1)lle, < 7M1

— —V,f(B(Ars1)) € oAk +19g ki1 as 0 41 = {z €RP : |z, <1}

= 0¢ vgf(ﬁ()‘k-&-l)) + Tg/\k-&-l@g,k_H

= g ¢ Ag(Ait1), by the KKT conditions (Equation ).
O

A.1.2 Variable reduction

Proof of Proposition[2.3] The proof strategy is similar to that of Proposition[2.1} To prove the two
sets are equivalent, we need to prove that for any ¢ € G, such that g € Ag,and k € {1,...,1 -1},
i1 € Ay(Ak11) < i € Cy(Agsr1). We instead prove the contrapositive: @ ¢ C,(A\xy1) < @ &
AU ()\k+1). SO7

i1 ¢ Co(Mptr1) = |Vif(BOk+1))] < A1y, by definition of the candidate set
= —Vof(Bkr1)) € Mer1a®)py, as @)y, ={z e R: [z <1},
for i € Gy, 9 € Ag(Apt1)
= 0€V,f(BArs1)) + /\k+1a<1)?,k+1
— i ¢ A,(Akt1), by the KKT conditions (Equation [T4).
O
Proof of Proposition2.4] The proof strategy is similar to that of Proposition 2.2] To prove the

candidate set is a superset of the active set, we need to prove that for any ¢ € G, such that g € A,
and k € {1,...,1—1},i € A,(MAg41) = @ € Cy(Ag41). We instead prove the contrapositive:
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i ¢ Co(Apt1) = i ¢ Ay(Ag41). First, we rewrite the Lipschitz assumption as (using the reverse
triangle inequality)

IVaf (BOw+)) < [IVaf (B + alArsr = Akl 21
Now, as ¢ ¢ Cy,(Ak+1)s
IVif(BOW))] < a(2Xeg1 — Ar)-
Plugging this into Equation 21] yields

IVif (B(Ak11))| < e
= - Vz‘f(ﬂ()\kﬂ)) € a)‘k+1q)?,k+17 as ‘I)?,kzﬂ ={reR:|z[ <1}
= 0 Vif(B\ks1)) + X190y
=i ¢ Ay(Mpt1)s by the KKT conditions (Equation [9).

A.2 KKT checks

To check whether a variable ¢ € G, has been correctly discarded, the KKT optimality conditions are
checked. Equat10n|E| describes the condition under which a variable 7 € gg is inactive and can be
rewritten as (by the definition of <I>17 k1)

Vi f(Bes1) + Aega(1— )8 | < Aesaa, (22)

where ‘1’%21 = {z € RVPs : |z||2 < 1}. To satisfy Equation the unknown subdifferential,

\I,(g) (9)

ik1 i1 We have that

is taken to be its minimum possible value. For x € ¥

[zllz <1 = Vpgllll2 < v/Pg
= [|z[1 < /Py by the inequality [|z[|y < \/pgllz|2
— |l‘2| < \VPg-

Hence, the values in the subdifferential are bounded by , /p,;. We consider the following scenarios for
Equation 22

1 Vif(BMks1)) > Mepr(1 — @),/Pg: choose x; = —,/py.
2. Vif(BMkg1)) < =Appa (1 — @),/Pg: choose x; = ,/Pg.
3. Vif (B(Ak+1)) € [FAks1(1 — @)y A1 (1 — @) /By): choose ; = %-

Therefore, the unknown quantity can be recovered using the soft-thresholding operator and we can
rewrite Equation 22]as

1S(Vif (BAs1))s M1 (1 — @) y/Pg)| < Mg

A similar derivation can be found in Simon et al. [42] to derive conditions to check whether a group
is non-active for SGL.

A.3 Path start

When fitting SGL along a path of values, A\; > ... > A\; > 0, A1 is often chosen to be the exact point
at which the first predictor becomes non-zero. By Ndiaye et al. [32] and using the dual norm from
Equation ] this value is given by

M= VSO = max 7 [94fO),.

.....



A.4 Reduction to (adaptive) lasso and (adaptive) group lasso

Under o = 1 with singleton groups, SGL reduces to the lasso. In this case, no group screening occurs
and the variable screening rule reduces to the lasso strong rule [45]]:

IVif (B < 2Xk41 — Ak

Under o« = 0, SGL reduces to the group lasso. Under this scenario, the group variable screening
reduces to the group lasso strong rule [45]:

IV f (B2 < v/Pg(2A1 = Av)-

and no variable screening is performed. For aSGL, the rules reduce to the adaptive lasso and adaptive
group lasso:

Adaptive lasso: |V, f(B(Me))| < vi(2Akg1 — Ae) = Bi(Apg1) = 0.
Adaptive group lasso: ||ng(B(/\k))H%1 S wyy/Pg(2Akp1 — Ak) = B9 (Npp1) = 0.

where €,1 = 1 in the e-norm.
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B Adaptive sparse-group lasso

B.1 Derivation of the connection to e-norm

The aSGL norm is given by

HWM—QZMMHﬂ—aXﬁwaWh

g=1
The aim is to link this norm to the e-norm, in a similar way to SGL:

m

1Bl = > (@ + (1 =) y/By) 1B, -

g=1

Splitting up the summation term in the adaptive lasso norm yields

OCZU1|57,‘ - az Z ’U’L|ﬁ1

g=1lieg,
m
:O‘Z ZUJ'ZWH— Z v;|Bi]
g=1 \j€G, i€G, 1,5€Gg,i#]
m
JEGy i ;| Bil
o3 (3 X i - g 0B 5 g
g=1 \j€g, icg, Ziegg e
SO PyPERE RS
= ; ; |
g=1ieg, J€G, Ziegg |Bz|
m . .
= Z ||1 ||U(g)||17Zi,jegg,i¢jvj|/31| '
g=1 18911

Hence

||6Hasgl = azvz‘/gz| + 1 -« ng\/»Hﬁ ”2

i id i 05| B
EjKu m—Elﬁﬁﬁiﬂ|>Wﬁml+ﬂ—®%¢%wwzm (23)
g=1

Setting

aZi,'egq,i;é'Uj|ﬁi|
VQZOzHU(g)\h - JHBG)Hi + (1 — a)wg /Dy,

simplifies Equation [23|to
- Vg — (1 - a)wy/p (1 — @wy/p
Bl = Y-y | (2 o (BB gy
g=1

g g9

Setting

6/9 _ (1- a)wg\/ZTg7
Vg

allows Equation [24]to be written in terms of the e-norm

18t = D70 |1 = €IBD N + egl1BD 2] = D891,
g=1 g=1

g
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B.1.1 Properties of the connection to the e-norm

An important aspect to note is that under 3(9) = 0 for a group g, the middle term in 74 becomes

lim O ijeg, iz VilBil\  alp, — 1) ngv‘
- (2]
B(9) 50 18@||4 Py —

so that y, still exists. This can be observed by using L’Hopital’s rule and noting that for i € G,

0 1o}

E 18| = E . @D, = 1.
aﬂv 4¢‘UJ|ﬁ’L| . ‘UJ7 361”5 ”1

i#] i£]

To see how this reduces to SGL under v = 1 and w = 1, note that

2ijeG, iz Vilbil
Pyg—CM(pg_ ]”6(9)ﬁ1 —}-(1—0&)\/}?751

B _(pg—l)lﬁ(g)Hl) )
‘“(pg o) TV

=a+ (1 —a)y/py =14

To understand the cross summation term, note that for the summation we are summing over each
B term p, — 1 times, as the matching indices are removed, that is (for simplicity of notation, we
consider G; so that the indexing here is reset from 1)

> vl =1B1lve ..+ [Bilvp, +1B2lvs + ..+ [Balvp, + - + Bpyvp -1
1,JE€G1,1#£]
= (pl - 1)‘181| .ot (pl - 1)|ﬂp1|a by Setting Vj = lvv] € gla for SGL
=1 —1) > [Bil = (o = DB
1€Gq

Hence, €/, also reduces to €,,.
g g

B.2 Theory
B.2.1 Path start

To find the path start for aSGL, the dual norm can not be used, as v, is undefined for 8 = 0. A
derivation can instead be found using a similar approach to that in Simon et al. [42], where the point
is found by solving the piecewise quadratic, for each g € G,

2
HS (X(Q)Ty/n, /\gv(g)a) H2 — pywi (1 — a)’A2 = 0.

Then, choosing A; = max, A, gives the path start point.

B.2.2 Group screening

To derive the group screening rule for aSGL, we compare the formulations of SGL and aSGL in
terms of the e-norm (Equations [3]and [T9):

18It = Y 7ollBONZ, s 1B8llasat = D vllBDI - (25)
g=1 g=1

Therefore, the derivation for the group screening rule for aSGL is identical to that of SGL (Section
2.3.1) replacing 7, with 74 and | - [, with || - [|;. The group screening rule is formalized in
Propositions[B.1]and B2} '
Proposition B.1 (Theoretical aSGL group screening). For any Ap+1,k € {1,...,1 — 1}, the
candidate set Cq(Apy1) = {9 € {1,....m} : |[Vof(B(Ae+1))lle, > vgAr+1} recovers the exact
support of the active groups for aSGL. That is, Cg(Ag11) = Ag(Apt1)-
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Proof. The proof is identical to that of Propositionreplacing g With g and || - [, with || - [|e
(see Appendix [A-T.T). O

Proposition B.2 (DFR-aSGL group screening). For any A1,k € {1,...,1 — 1}, assuming that
Vg f (BOk11)) = Vo F (B ey, < vglAes1 — Ak,

the candidate set Cq( A1) = {g € {1,...,m}: ||ng(3()\k))HE/g > Yg(2Ak41—Ax) } is a superset
of the set of active groups for aSGL. That is, Ag(Ak+1) C Cg(At1)-

Proof. The proof is identical to that of Propositionreplacing g With g and [| - [, with |[ - [|e,
(see Appendix [A.T.T). O

B.2.3 Variable screening

The construction of the variable screening rules for aSGL is very similar to those for SGL (Section
[2.3.9). The key difference is that the KKT stationary conditions for aSGL for an inactive variable in
an active group are given by (in comparison to Equation [I5]for SGL)

~Vif(B(Aket1)) € Mp1av; @0, 1.

Therefore, the derivation of the rule is identical, replacing o with aww;. The variable screening rule is
formalized in Propositions and[B.4]
Proposition B.3 (Theoretical aSGL variable screening). For any A\p41,k € {1,...,1 — 1}, the

candidate set C,(Ap1) = {i € Gy for g € Ag(Mk+1) 1 [Vif (B(Akt1))| > Akt100;} recovers the
exact support of the active variables for aSGL, that is, C,(Aky1) = Ay (Agt1)-

Proof. The proof is identical to that of Proposition[2.3|replacing o with aw; (see Appendix[A.1.2). O
Proposition B.4 (DFR-aSGL variable screening). For any Ap11,k € {1,...,l — 1}, assuming that

IVif (Bks1) = Vif (BOW))] < avi(Ae = Aps1),
the candidate set Cy(A11) = {i € Gy for g € Ag(is1) = [Vif (BOw))| > avi(2Aks1 — M)} isa
superset of the set of active variables for aSGL, that is, Ay,(Ak+1) C Cy(Agt1)-

Proof. The proof is identical to that of Proposition[2.4]replacing v with aw; (see Appendix[A.1.2). O

B.2.4 KKT checks

The KKT checks for aSGL are also similar to those for SGL (Section[2.3.3): a KKT violation occurs
for a variable i € G, if

IS(Vif (B(Akt1))s A1 (1 — @)wg/Dg)| < Ap1via. (26)

B.3 Choice of adaptive weights

The adaptive weights are chosen according to Mendez-Civieta et al. [28] as

1 1
Wq

V;

v lqus| ™ ’ ig)H;/z ’

llq

where q¢; is the first principal component from performing principal component analysis on X and
~1, V2 are chosen by the user, often in the range [0, 2]. The weights are shown for v; = 792 = 0.1 in

Figure[ATl]
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Figure Al: The weights, (v, w), for aSGL, used in Figure(left), where p = 1000, n = 200, m =
22,p=0.3,71 =v2 = 0.1, and a = 0.95.

B.4 Algorithm

Algorithm A1 Dual Feature Reduction (DFR) for aSGL
Input: A € R, X e R™*P. y € R", a € [0, 1]

compute B(Al) using Equation (1} replacing the SGL norm with Equation
fork=1tol—1do

Cg(Ak+1) < candidate groups from Equation

Cu(Ak+1) < candidate variables from Equation[§|for i € G, g € Cg(Ap+1), and i ¢ A, (A)

Oy + Cy(Apg1) U A, (Ag) » Optimization set
compute BZ-(A;CHL i € O,, using Equation replacing the SGL norm with Equation
IC,, + variable KKT violations for i ¢ O,, using Equation » KKT check
while card(KC,)) > 0 do
0, 0, UK, » Optimization set
compute Bi(/\k+1), 1 € O,, using Equation replacing the SGL norm with Equation
K, < variable KKT violations for i ¢ O,, using Equation » KKT check
end while
end for

OUtPUt: Basgl()\l)a R Basgl()\l) € RPXl
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C Competitive feature reduction approaches

Sparsegl Sparsegl is a screening rule proposed by Liang et al. [27] and performs a single layer
of group screening. The rule is based off the framework of Tibshirani et al. [45] and the first order
condition derived in Simon et al. [42], i.e, that a group is inactive if

IS(VF(B9), Aa)ll2 < /pg(1 — @), 27
Using a Lipschitz assumption on the ¢ norm:
IVgf(BAk+1)) = Vo f (B2 < wy(1 = @) Akr = Arl, (28)
leads to the sparsegl screening rule: discard a group g if
IS(VF(BD), Aa)[l2 < wg(1 = @) (20k41 = Ak)- (29)

This screening rule uses a different Lipschitz assumption at a group-level (Equation[I2), which in
turn leads to a different group-level rule (Equation[5). Our Lipschitz assumption is more consistent
with the work of Tibshirani et al. [45]], as the assumption is with regards to the dual norm of the full
SGL norm, rather than just the group lasso norm component.

GAP safe An exact feature reduction method for SGL was proposed in Ndiaye et al. [31]] under
linear regression. The approach makes use of the sub-differential inclusion equation of Fermat’s
rule [2]: XTOWN ) € g - [|@(BX 1)), where © is the solution to the dual formulation of
Equation[I} Using this, exact (theoretical) rules are derived to determine which variables and groups
are inactive at the optimal solution. The rules are theoretical as they rely on @M Il which is not
available in practice. Instead, a safe region is constructed that contains the optimal dual solution; in
Ndiaye et al. [31] it is taken as a sphere, but other regions can also be used (such as domes). Due to
these safe regions, the reduction is generally more conservative.

The safe region is defined as B(©., ) with radius r and center ©.. An ideal region would be such

that r is small and the center is close to @[l Using this safe region, the GAP safe rules at A\x41
are derived as

Variable screening: Vj € g, |XJ-T®C| +r| Xl <7 = Bi(Aes1) =0, (30)
Group screening: Vg € G, T, < (1 — a)\/pgy = B Ney1) =0, 31

where . . .
7= { b L L oo 2

The center ©, and the radius r are derived using the duality gap and are calculated at iteration ¢ in an
iterative algorithm as

)

- X 2P o — Dy, (6,
O:(Bw)) = Y B 2 Tt(ﬂ(t),@t)—\/ et 1,0 (Bt)) Ars (©1)

max(Art1, [|[ X T (y — XBw) I

2
sgl )‘k+1

(33)
where Py , and D) are the primal and dual objectives, and ;) is the primal value at iteration ¢. The
radius and center are expensive to evaluate, so are calculated every 10 iterations in Ndiaye et al. [31].

The above formulation combines both dynamic and sequential screening. The method can also be
implemented using just sequential screening, in which the primal values /3 used in the calculation of
the center and radius are from \j.

For both the GAP safe rules and DFR, theoretically it would be possible to exactly identify the active
sets, but both instead require approximations.
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D Synthetic data analysis

This section complements Section [3|by providing further information about the simulation set-up and
additional results generated for the synthetic data. Additional tables and figures are provided that
further showcase the effectiveness of DFR. In addition, results for synthetic data generated under the
logistic model are presented. Finally, the computational savings obtained by applying screening are
evaluated for cross-validation.

D.1 Metrics
The following metrics are shown in the Tables in the appendix:

» A,, Ay the number of active variables/groups.
* Cy,Cy: the number of variables/groups in the candidate sets.

* O, Og4: the number of variables/groups used in the optimization process.

K., Kq: the number of variable/group KKT violations. DFR only checks for group violations
and sparsegl only checks for variable violations.

O, / Ay and O, / A,: the proportion of variables/groups used in the optimization against
the number active. Defines how efficient the rules are. A low number is preferred.

O, / pand Oy / m: the variable/group input proportion, as defined in Section

* /5 distance to no screen: {5 from the fitted values obtained with screening to without.

D.2 Setup

Table Al: Default model, data, and algorithm parameters for the synthetic and real data analyses.

Category Parameter Values
Synthetic Real
Model
@ 0.95 0.95
Y1 = 72 (aSGL only) 0.1 0.1
Path length (1) 50 100
Path termination ()\;) 0.1\ 0.2\
Path shape Log-linear Log-linear
Data
P 1000 -
n 200 -
m 22 -
Group sizes [3,100] -
ﬁ N (07 4) -
Variable sparsity 0.2 -
Group sparsity 0.2 -
P 0.3 -
€ N(0,1) -
Algorithm (ATOS)
Max iterations 5000 10000
Backtracking 0.7 0.7
Max backtracking iterations 100 100
Convergence tol 107° 107°
Standardization 2 2
Intercept Yes for linear  Yes for linear
Warm starts Yes Yes
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D.3 Additional results for the linear model
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Figure A2: The input proportion for strong against safe rules, applied to synthetic data, as a function
of the dimensionality (p), with 95% confidence intervals. sparsegl has been separated into the right
plot, using a different y-scale, so that the narrow differences between the other methods can be
observed.
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Figure A3: The input proportion for the screening methods applied to synthetic data, under the
linear model, as a function of the data sparsity proportion (left) and signal strength (right), with 95%
confidence intervals.
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Figure A4: The improvement factor for the screening methods applied to synthetic data, under the
linear model, as a function of the data correlation (left) and « (right), with 95% confidence intervals.
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D.4 Interaction Models

0 Order 2
0 Order 3

Input proportion

DFR-SGL DFR-aSGL sparsegl

Figure AS: The input proportion for the strong rules applied to synthetic interaction data, under the
linear model, with standard errors. The parameters of the synthetic data were set as p = 400, n = 80,
and m = 52 groups of sizes in [3, 15]. The interaction input dimensionality was po, = 2111, po, =
7338 for orders 2 and 3, with no interaction hierarchy is imposed.

31



0F0 0F0 -0l XV F 10T X¢ €EFTL 6VF630L E0FT 0LT F18€¢ ¢S F 99¢1 ¢ JHAAO TOISIVdS
0F0 0F0 210 X9F (10T XSG ¢CEFLLY 6FF 6801 EF Ve L+ 0T ¢S F 99¢C1 ¢ JHAA0 T1OS-¥4d
0F0 0F0 60l XCTF g 0T X1 0€ + 919 €€ F €001 IT+7¥¢ GO F LLS 167 + 60CCT ¢ ddAd0Q  TOSV-¥4d
0F0 0F0 10T X TF ;0T XC €GF899 BEF I.LCI T+L4 6¢ F 61¢ 8¥ F L86 ¢ ¥4ad0 TOISIVdS
0F0 0F0 10T X T+ 10T XL 9F0VI 8¢ F+ 1.CT CTF VY ¢+ et 8 + L86 ¢ ¥44ad0 TOS-¥4d
0F0 0F0 6—0L X T F ¢_0I X¢ 9F LET 6¢ F €E€1 Gl F LET ST F VLI TV + 17021 C¥dad0 1OSv-ddd
NAZ4DS  NIZYOS ON  NHH¥OS ON OL NAHIDS  NHIYOS ON  ¥OLOVA LNAWHAOYIW] (S) NZFY¥DS  (S) NZAYOS ON AdAL AOHLAN
FONADYTANOD ATV HONVLSIA &) SNOILVYAL] SONIWIL

"SIOIIS pIepue)s YIm umoys ‘sjutod yred pue suONLIT UOTIR[NUIS [[B poSeIoAe HoEmH 0) Surpuodser10o sommaw SumYy [OPOIN 61V [qRL

¢00'0FcCcl’'0 S6C°0F988LT — GO9I+ G168 C9TFG168 SKO0F<C9F ¢ ddAd0 TDdSIVdS
0000 F G100 ¢S0'0FCIL'T 0F0 6'TFO6TIIT ¢'TF+ 789 8'0F 9y ¢ d4dad0 TOS-¥44d
000°0 F 2100 8€0'0F8LC'C €000 F Lv0'0 S T1TFCI16 80+ 8'1¢ LOF 8Ty ¢d3adQ T1OHSV-Iddd
G000 F9ST°0  L60°0F TLLTT -~ 0°G + ¢'6¢¢ 0'G + ¢'6cCE 7'0F69C TIHAIO TOHISYVdS
0000 F €200 600°0F 6641 0+F0 LOFGCLY ¢'0F 8¢C¢ 7’0+ 6'4Cc THHAAO T1OS-¥4d
0000 F 1T20°0  L00°0 F L19'T ¥00°0 F 1000 90F V¥V ¢0F 161 7'OFC9¢ THYHAIO TOSV-Ydd
d/ o W /0 any o) ) s ddAL AOHLAN
NOILYOdO¥d LNdN] ALI'TVNIQEVD

"SI0110 pIepuels s umoys ‘sjutod yyed pue suoIeIo)l UonE[NWIS [[& paSeIoAe HoSmH 0 Surpuodse1100 soLow SUIUSAIOS J[qeLIeA ]V 9[qeL

T00'0 F860°0 €000F€0CT - 0IXEF_0IX¥ <CO0OFCO0I COFcCOl TOFIS [oR: E(eR:(9) TOHSYVIS
000 F6IT°'0 9000F8IW'T -— COFVCrT CTOFV¥VelT TOFI8 ¢ JHAAO T1OS-¥44d
¢00'0 +G60T°0 ¢So0O0+FO0VET -— ¢COF60T COFO0OITL TOF6L ¢ ¥dHAd0  TOSV-¥4d
¢00°0F LZT°0 €000F99T'T OFO COFCEl COFCEL TOF6'0I CAHAAO TOHESYVIS
¢00°0 F IST°0  S00°0F T6C'T — GOFLCET COFLST TOF60T Cd4dd0 TOS-¥4d
¢000FE¥1T'0 ¥OOOF 16T — COFO6V7L COF6¥L TOFEIT CdEAI0 TOSV-¥4Ad
w /50 5y /50 by 50 9] by AdAL AOHLAN
NOILYOdO¥d LNdN] ALI'TVNIQ¥VD

"SI01I0 pIepuels s umoys ‘syutod yied pue SuORIO) UOHE[NWIS [[B PoSeIoAr Ho_@a 1, 03 Surpuodser10o sorewr Surusaros dnoi) 1/ [V 9[qeL

32



D.5 Adaptive SGL

s Linear Logistic
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Figure A6: Robustness of DFR-aSGL under different y; = 2 values for the weights, shown for
linear (left) and logistic (right) models, with 95% confidence intervals. The data was generated using
the parameters in Table
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D.6 Results for the logistic model

The data input components X, 3, and e for the logistic model were generated as for the linear models.
The class probabilities for the response were calculated using o (X + €), where o is the sigmoid
function.
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Figure A7: The input proportion for the strong rules applied to synthetic interaction data, under
the logistic model, with standard errors. The parameters of the synthetic data were set as p =
400,n = 80, and m = 52 groups of sizes in [3, 15]. The interaction input dimensionality was
po, = 2111, po, = 7338 for orders 2 and 3, with no interaction hierarchy is imposed.
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Figure A8: The improvement factor for the screening methods applied to synthetic data, under the
logistic model, as a function of the data sparsity proportion (left) and signal strength (right), with
95% confidence intervals.
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Figure A9: The input proportion for the screening methods applied to synthetic data, under the
logistic model, as a function of the data sparsity proportion (left) and signal strength (right), with
95% confidence intervals.
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Figure A10: The improvement factor for the screening methods applied to synthetic data, under the
logistic model, as a function of the data correlation (left) and « (right), with 95% confidence intervals.
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Figure A11: The input proportion for the screening methods applied to synthetic data, under the
logistic model, as a function of the data correlation (left) and « (right), with 95% confidence intervals.

Table A20: The improvement factor for the strong rules applied to synthetic interaction data, under the
logistic model, with standard errors. For the interaction data, the parameters of the synthetic data were
set as p = 400, n = 80, and m = 52 groups of sizes in [3, 15]. The interaction input dimensionality
was po, = 2111, po, = 7338 for orders 2 and 3, with no interaction hierarchy imposed.

Interaction
Method Order 2 Order 3
DFR-aSGL 6.7+0.4 122+04
DFR-SGL 5.8 +0.2 8.3+04
sparsegl 1.0+£01 214+0.3
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D.7 Cross-validation

Cross-validation (CV) is an important tool for tuning A\. However, due to its cost, « is often set
manually, rather than included in a grid optimization scheme. Using DFR with 10-fold CV yielded
computationally gains (Table[A36) that enable future tuning schemes for SGL to consider both « and
A, and aSGL to include the weight hyper-parameters ~y; and ~ys.

Table A36: The improvement factor for the screening methods applied to synthetic data, under the
linear and logistic models, with cross-validation (CV), with standard errors. The data was generated
using the parameters in Table [AT]

Method Linear = Logistic

DFR-aSGL 3.94+0.2 23+0.1
DFR-SGL 42+£0.3 26+£0.1
sparsegl 20+0.2 21+40.1
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E Real data analysis

E.1 Data description

brcal: Gene expression data for breast cancer tissue samples.
— Response (continuous): Gene expression measurements for the BRCA1 gene.
— Data matrix: Gene expression measurements for the other genes.
— Grouping structure: Variables are grouped via singular value decomposition.
scheetz: Gene expression data in the mammalian eye.
— Response (continuous): Gene expression measurements for the Trim32 gene.
— Data matrix: Gene expression measurements for the other genes.
— Grouping structure: Variables are grouped via singular value decomposition.

trust-experts: Survey response data as to how much participants trust "experts" (e.g. doctors,
nurses, scientists) to provide COVID-19 news and information.

— Response (continuous): The trust level of each participant.

— Data matrix: Contingency table including factors about participants (e.g. age, gender,
ethnicity).

— Grouping structure: The factor levels grouped into their original factors.

adenoma: Transcriptome profile data to identify the formation of colorectal adenomas,
which are the predominate cause of colorectal cancers.

— Response (binary): Labels classifying whether the sample came from an adenoma or
normal mucosa.
— Data matrix: Transcriptome profile measurements.

— Grouping structure: Genes were assigned to pathways from all nine gene sets on the
Molecular Signature Database.

celiac: Gene expression data of primary leucocytes to identify celiac disease.
— Response (binary): Labels classifying patients into whether they have celiac disease.

— Data matrix: Gene expression measurements from the primary leucocytes.

— Grouping structure: Genes were assigned to pathways from all nine gene sets on the
Molecular Signature Database.

tumour: Gene expression data of pancreative cancer samples to identify tumorous tissue.

— Response (binary): Labels classifying whether sample is from normal of tumour tissue.
— Data matrix: Gene expression measurements.

— Grouping structure: Genes were assigned to pathways from all nine gene sets on the
Molecular Signature Database.

Table A37: Dataset information for the six datasets used in the real data analysis.

Dataset P n m Group sizes  Type Source

breal 17322 536 243 [1,6505] Linear  [20]]

[
scheetz 18975 120 85  [1,6274] Linear  [39]"
trust-experts 101 9759 7 [4,51] Linear B8P
adenoma 18559 64 313 [1,741] Logistic  [37F]
celiac 14657 132 276 [1,617] Logistic  [17]°
tumour 18559 52 313 [1,741] Logistic  [34} 23, [10]3

!downloaded from https://iowabiostat.github.io/data-sets/
2downloaded from https://github.com/dajmcdon/sparsegl
*downloaded from https://www.ncbi.nlm.nih.gov/

42


https://iowabiostat.github.io/data-sets/
https://github.com/dajmcdon/sparsegl
https://www.ncbi.nlm.nih.gov/

E.2 Additional results for the real data

10~1

10-2 [ DFR-SGL
[ DFR-aSGL
[ sparsegl

10~3

Input proportion (log1o)

brcal scheetz  trust-experts adenoma celiac tumour

Linear Logistic

Figure A12: The input proportion (log,, scale) of the screening methods applied to the six real
datasets, split into the model type.
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Figure A13: The input proportion as a function of the shrinkage path for the screening methods
applied to the adenoma, tumour, scheetz, and trust-experts datasets.

43



3—0L X 6F91¢0°0 TSE00F9LCV'T O0+F0 6¢0FLLY9 6711 + 8L°9C1 ¥¢'0+¢0'Q dNONWNL TOHSYVAS
¢T00°0 F+ 18¢0°0 L6600 F¢49¢’'T  — 8¢'0 F08'S 86’0 F 08’8 ¥¢' 0+ ¢0°'G dNONNL T1OS-d4d
p—0L X 8F9800°0 LI€O0+F €LICT — ¥¢'0 +69°C ¥¢'0+99°C 91°0 + L0°C dNONWAL  TOSV-¥4d
PLI00 F 2680 000000 F0000T O0FO0 CIOFGE9  8T0F6£0 CUOFCC9  SLNAXHA-LSOUL  IOESUVAS
6910°0 F+ €€06°0 €G00°0 + L900°'T - ¢L'0+¢e9 ¢I'0+¢€9 ¢l'0F 629 SLYHdXH-LSNIL 1OS-¥d4d
L8100 FC6LL°0 82000 FOVO0T  — EUOFCPE  ETOFEVS EUOFEPG  SLNIXI-LSNAL  TOSV-4Ad
¢T00°0 F 9800°0 98700 F6¢8T'T 0F0 OT'0FELO ¢S'0¢C + 87'91ST 800 F 190 Z1ddHDS TOdSAVdS
7100°0 + TOTO0 16600 + LESS' T — ¢I'0F+ 980 ¢L'0F 980 80°0F 190 Z1A9dHDS TOS-¥4d
»—0T X ¥ F 61000 0000°0F 0000'T - ¥0'0 +9T1°0 70'0 +91°0 70'0F91°0 Z1ddHOS  TOSV-IY4dd
¢c00°0 F L6200 9LT0'0 F290T'T O0+F0 GS0FGC9 70'8GC + 8C'¥86E 870 F+ 659°¢ VOOL-0d TOHSYVdS
Gc00°0 F ¥8¢0°0 8Tc00 F ¢€¢0T'T — 090 F 069 090 F 069 87’0 F09°¢ VODL-0d T1OS-d4d
=0T X L FG800°0 ¢900°0F 6800°T -— 910 +90°¢C 91’0 +70°¢C 9T'0 F+70°C VOODL-0d TDSV-¥4dd
L900°0 + 00L0°0 ¢Ic00FSIPCc’'T O0+F0 PRI FCE6T LOTVIF E€C6IS 97T + 9¢°GT OVITED TOHSYVdS
7.00°0 + 66L0°0 9L20°0 F L9¢V'T  — €0Cc+¥v0¢c ¢€0°¢F7v0¢Ce SV'T +6¢°GT OVITHO TOS-d4d
I¥00°0 + ¢1€0°0 7LE0°0 F €V6S' T — VI'T+ 198 IC'T+ G6'S CLOFILG OVITAD  TTOSV-IAdd
LT00°0 + 7200 ¢v60'0 F I¥19C 0F0 €9°0F 698 67T + 19°84T 1¢°0 F¢¢'¢ VIWONHAV TOEISAVIS
2¢¢00°0 + 0€70°0 €002°0 + 1¢19°vy  — 890 F97'¢Tl  890F 9¥'€Cl 120 F 0¢°¢ VINONHAV 1OS-¥4d
5—0T X ¢ F+8c000 6900°0F 6900°T — L0°0F L80 900 F¥8°0 900 F98°0 VINONHAV  TOHSV-¥44d
w /50y 5y /50 by 50 ) by LASVIVJ AOHLIN

NOILIOdOdd LNdN]

ALI'TVNIAYVD

'SI10110 pIepuels rm umoys ‘sjutod yied [[e 1oA0 cowﬁo\é_m_ 231 0} Surpuodsa11od sommow Furuealos dnoin gy J[qe],

44



,—0T X 8 F €€T0°0 €616'0 F CV66'SC  — 6£°GT F 08'97C 6€°CT F 08'97C zL'0 F 0L0T ANOWAL  TDISAVAS
¢ 0T X9 F 11000 6STT°0 F 2EVET 0F0 60'T F 7€°0C 050 F L8°6 zL'0F 0L°01 4NOWNL  TDS-¥4d
0T XE€F ,_0IXE €3S0°0TF V80T €L10°0 F €0€0°0  LSOFLLY LTOF L9°T Ge'0F0T'€E 4NOWNL  TDSV-¥4d
GT€0°0 F 988L°0 TVL0'0 F 8089°C - 61°€ F¥96L 9G°0 F GL'0 68T F LLEE SI¥HdXHI-LSN¥L  TIDISUVAS
L8T10°0 F LTFE0 GG00°0 F LL20'T 0F0 68'T F 29¥¢ eT0F 62T 88'T F 88°€E SIMEdXE-1SNYL  TDS-¥Ad
€1T0°0 F 6€ST°0 $900°0 F GTE0'T TVI0'0 F 20200 ¥T'T F 8G'ST TI0F 280 IT'T F 7081 SI¥HdXE-LSNNL  TOSV-Y4d
€020°0 F L6GT°0 TLVE'0 F 8L6T'9 - 09°G8E F F2'060€  9°G8E F #2°0£0€ 9909 F 67 10G ZIAGHOS  IDASUVAS
€600°0 F TFF0°0 1690°0 F 8899'T 0F0 TO'TOT F€2°968  ¥2'0S F T6V¥E 8909 F 82°T0G Z1EAHOS  1DS-¥Ad
2200°0 F L600°0 G900°0 F £7SE'T 0F0 eV'eh F ST 8T €€°CT F L0°9G Ge1e F1°9¢T ZLEGHOS  TDSV-¥d4d
80T0°0 F ¥06€°0 0L10°99 F TLI8'G6 - 6G°98T F 1€°C9L9  6G'98T F 1€C9L9 V€L TF 65 TVC VOD1-08  TDASYVAS
»_0T X G F 72100 GV69'C F 98€6'€ 0F0 18'8 F 08°10€ 92V F ¢V'€9 Ve'LF 69 17T vooL-0d  TDS-¥dd
»—0T X S F L9000 8800°0 F THLT'T TVI0'0 F2020°0  €€'8 F6G9TT 9¢'C F €9°02 969 F 1726 vO01-08 TOSV-¥4d
€200°0 F 96900 9LTT'T F €GL9°LE  — 8L°90T F €T'6T0T  8L°90T FET'610T ¥6°€ F 97'LE OVITID  1DESUVdS
»—0T X & F 27000 GeT0'0 F L8I9'T 0F0 LL9F V619 G0'EFIT'9T T6'€ FET'LE ovITED  1DS-¥4d
»—0T X ZF 11000 L990°0 F #€29'T 6520°0 F L0L0'0  LV'T F€9'9T CUTFSVL 67T F 856 OVITAD  TOSV-IAd
1100°0 F 9910°0 19€9°'T F 660097  — 18°0Z F 79°80€ 18°0Z F 79°80€ CUTF IV VINONEAY ~ TOES¥VdS
»—0T X 2 F 17000 9LLL°0 F GG96'S 0F0 68'¢ F 1G°GL 06CF LV’ 19 TT'T F8EFT VINONHAY  TDS-¥dd
OTXTF,_0IXT T920°0F €80T'T €LT0°0 F €000 S8T0F9T'C 90°0 F €2°0 S0 FC6'T VINONHAY  TOSV-¥dd
d/*o v /0 oy 0 ) Ne LASVIVd dOHLIN
NOILIOdOdd LNdN] ALI'TVNIQYV)D

"SI01I9 prepue)s Yim umoys ‘sjutod yied [[e 1040 wowﬁo>m_m_ 21n31,] 03 SurpuodsarIod SOLIOW FUIUAIOS S[qRLIBA 6EV 9[qeL

45



000 F 000 PO0FO980 (;—0T XCF 401 X7g 8€'6 F 7' L61 09'¥2¢¢ F ¢0°CLT6  €6°C8 €0°06 €8°997L dNONNL TOHSYVIS
0000 F 000 F0'0F980 01—0T X CF 40 X¢ 79°L F LT 98T 09'vce + ¢0°CLT6  67°ER8 €768 €8°997L dNONNL T1OS-d94d
000F 000 G00F990 g OIXTF4_0IXg 0¢'9 F ¢¢'cs TT°LCV + CS'8TVL 66006 L9°9 ¢G9009 dNONWNL  TOSV-Y4d
000 F 000 000FO000 ¢_O0IXCF4_0IXE¢ L9°CE F 8V EEV 0L°€E F 6S° 1SV 701 ¢9°6¢ 18°0¢ SLIAdXd-LSNIL TOHSYVdS
000 F00°0 00°0F000 pi—0L X E€F 0T XT B6'EEFI0LIY 0L°€€ F 6€°1CTF 9¢'T L9°C¢C I8°0¢ SLYAdXd-LSNAL T1OS-¥44d
000 F 000 000F000 ,0TXLFHGO0IXT 166 + 1€°L0C LT°0T + ¥0'%0¢ 671 0¥'01 7G6GT SLYddXd-LSNYL  TOSV-Y4d
FOOFBT0 TOOFBL'O 70T XCTF 0L XSG FPI8E F SV 0681 0V'98¢ F IC 1681 1¢0T 699999 LL'78089 ZLAdHDS TOHSYVdS
0000 F 000 FOOFST0 01—0T X8F 4_ 0L X ¢ GI'9€T + 8€°CT9 07'98¢ + I¢°'168T  1€°0¢ ¢1'9v¢ce L2 78089 ZLAdHDS T1OS-d4d
000F 000 000F000 4+ O0TXTF4H_0IXE 8TFCsL ¢V'ST + 9¢°€9 61°¢C 16°L0T 68°00S¢C Z19dHDS  TOSV-¥4d
000 F 000 000FO000 ;0T XTF4H_0IXT E€TTFFELORST LL6T F LOTLIT 8¢°¢ 70'Cce1y T0°LCCCC VODL-Od TOHSYVdS
00°0F+00°0 000-F000 e1—0L XE€F ;10T XC FVELFITTEE LL6T + LO'TVLIT LT'VIC 8LE0T T0°L2CCC VODL-0d T1OS-d4d
000F 000 000F000 (- OIXTF4z0LXE ¢9°4T + LE°¢0T 7¢'9L + 9¢79¢T ¢6'vvT 61911 £G'8E891 VOODlL-04 TDOSV-¥dd
00’0 F 000 000FO000 0L XEFg_0T XY 98’8 F 6¢°€6 €186 F 7&°G6T1 0or'¥8 6791 8L T16€T OVITdD TOHSYVdS
000 F+00°0 000-F000 g 0L X T+, 0IX¢ 096 + L&'GL €1'86 + 7€°4611 g6vel  1€°01 8L T6ET oVITdD T1OS-d4d
000F 000 000F000 (- OIXVFg0IXEg G¥'¢ F G4°8¢ GL 70T F+ 60748 T0°0VT  L0°L 00°066 OVITAD  TTOSV-Ydd
¢00F 00 €00+F LSO 9—0L X TF 01T X¢ 16°06€ + 9T°0V1ISC T1€°90C F 6°CLT6 9¥°G¥ 9¢'861 0L°LT06 VINONHAV TOISYVdS
0000 F00°0 €00FL80 90l X T F 01 X€ ¢9°98¢C F V9 V.LEY  T1€°G0C F 6°CLC6 8709 0T'6vI 0L°LT06 VINONAAV T1OS-d44d
000F 000 GOO0FTI90 ¢ O0IXGF,_0IXG 80°L F 8L°6¢ VSOry F €VLV99  09°LI6 869 L8 7079 VINONHAV  TOSV-Ydd
NATIOS NAH40S ON  NHI¥DS ON OL NAgI0S NATIOS ON J'1 (S) NZZIDS  (S) NAFIYOS ON LAsvivq AOHLIAN
HONADYHIANOD ATIVH ADNVLSIA &) SNOILVYAL] SONIIIL

"paren[eAd sem yied o[oym Sy 9Je[NO[ED 0) SWI) AY) SE S)NSAI
Funun 9y} J0J SI01I3 pIepuels OU AJe AIJY ], "SI0 pIepuels Yim umoys ‘sjutod yyed [[e 19A0 @owﬁo\/m_m_ 31 03 Surpuodsariod soaw 3umy [poIN (0yV 21qel

46



	Introduction
	Feature reduction approaches for the sparse-group lasso
	Contributions

	Theory
	Problem statement
	Dual norm
	Dual feature reduction
	Group reduction
	Variable reduction
	Karush–Kuhn–Tucker (KKT) checks

	Algorithm
	Adaptive sparse-group lasso

	Numerical results
	Analysis of synthetic data

	Real data analysis
	Discussion
	Appendix
	 Appendix
	Sparse-group lasso
	Theory
	Group reduction
	Variable reduction

	KKT checks
	Path start
	Reduction to (adaptive) lasso and (adaptive) group lasso

	Adaptive sparse-group lasso
	Derivation of the connection to epsilon-norm
	Properties of the connection to the epsilon-norm

	Theory
	Path start
	Group screening
	Variable screening
	KKT checks

	Choice of adaptive weights
	Algorithm

	Competitive feature reduction approaches
	Synthetic data analysis
	Metrics
	Set up
	Additional results for the linear model
	Interaction Models
	Adaptive SGL
	Results for the logistic model
	Cross-validation

	Real data analysis
	Data description
	Additional results for the real data



